Skip to main content

Emergence of Neuronal and Glial Cell Lineages in Primate Brain

  • Chapter
Cellular and Molecular Biology of Neuronal Development

Abstract

It has become increasingly evident that the interaction between glial and neuronal cells in the developing mammalian brain plays an important role in the migration and compartmentalization of young neurons and, later, in their maintenance and the regulation of their environment. Furthermore, it appears that genetically or environmentally induced disturbances of neuronal—glial interactions during development may lead to structural, biochemical, and functional abnormalities of the brain (e.g., Rakic, 1975a; Caviness and Rakic, 1978; Volpe, 1981). Since the majority of cells in the mammalian brain are of glial lineages, it is safe to say that each neuron is likely to be in direct contact with at least one glial cell, but probably with several glial cells. However, although it is well established that both neuronal and glial cells derive from the neuroepithelium of the primitive neural tube, it has proved difficult to determine the exact timing and cellular mechanisms that lead to divergence of these two cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Antanitus, D.B., Choi, B.H., and Lapham, L.W., 1976, The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence, Brain Res.103:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res.43:42–435.

    Article  Google Scholar 

  • Black, I.B., 1982, Stages of neurotransmitter development in autonomic neurons, Science 215:1198–2104.

    Article  PubMed  CAS  Google Scholar 

  • Caviness, V.S., Jr., and Rakic, P., 1978, Mechanisms of cortical development: A view from mutations in mice, Annu. Rev. Neurosci.1: 297 – 326.

    Article  PubMed  Google Scholar 

  • Choi, B.H., and Lapham, L.W., 1978, Radial glia in the human fetal cerebrum: A combined Golgi, immunofluorescent and electron microscopic study, Brain Res.148:295–311.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, C.J., and Rakic, P., 1983, Differentiation of granule cells in the dentate gyrus of the rhesus monkey: A quantitative Golgi study, J. Comp. Neurol. 214: 224 – 337.

    Article  PubMed  CAS  Google Scholar 

  • Eckenhoff, M.F., and Rakic, P., 1982, Golgi, immunocytochemical and electron microscopic evidence for the radial organization of the developing dentate gyrus in rhesus monkey, Abstr. Soc. Neurosci. 8: 821.

    Google Scholar 

  • Eng, L.F., and Bigbee, J.W., 1978, Immunochemistry of nervous system-specific proteins, in: Advances in Neurochemistry, Vol. 3 ( B.W. Agranoff and M.H. Aprison, eds.) Plenum Press, New York, pp. 43 – 98.

    Google Scholar 

  • Eng, L.F., and DeArmond, S.J., 1981, Immunocytochemical studies of astrocytes in normal development and disease, in: Advances in Cellular Neurobiology, Vol. 3 ( S. Fedoroff and L. Hertz, eds.), Academic Press, New York, pp. 145 – 171.

    Google Scholar 

  • Fujita, H., and Fujita, S., 1963, Electron microscopic studies on neuroblast differentiation in the central nervous system of domestic fowl, Z. Zellforsch. 60: 463 – 478.

    Article  CAS  Google Scholar 

  • Fujita, H., and Fujita, S., 1964, Electron microscopic studies on the differentiation of the ependymal cells and the glioblast in the spinal cord of domestic fowl, Z. Zellforsch. 64: 262 – 272.

    Google Scholar 

  • Fujita, S., 1963, The matrix cell and cytogenesis in the developing central nervous system, J. Comp. Neurol.120:372.

    Article  Google Scholar 

  • Fujita, S., 1966, Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain, in: Evolution of the Forebrain( R. Hassler and H. Stephan, eds.), Georg Thieme, Stuttgart, pp. 180 – 196.

    Google Scholar 

  • Fujita, S., 1980, Cytogenesis and pathology of neuroglia and microglia, Pathol. Res. Pract. 168: 271 – 278.

    PubMed  CAS  Google Scholar 

  • Golgi, C., 1885, Sulla fina anatomia delgi organi centrali del sistema nervoso, republished in: Opera Omnia, Hoepli, Milan, pp. 397 – 536.

    Google Scholar 

  • His, W., 1889, Die Neuroblasten und deren Entstehung im embryonalen Marke, Abh. Math.-Phys. KL Saechs. Akad. Wiss. 15: 313 – 372.

    Google Scholar 

  • Ivy, G.O., and Killackey, H.P., 1978, Transient population of glial cells in developing rat telencephalon revealed by horseradish peroxidase, Brain Res.158:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. (ed.), 1978, Developmental Neurobiology, 2nd ed., Plenum Press, New York, 562 pp.

    Google Scholar 

  • Kostovic, I., Krmpotic-Nemanic, J., and Kelovic, A., 1975, The early development of glia in human neocortex, RadJugosl. Akad. Znan. Umjet. Nat. Sci. Ser. 17: 155 – 159.

    Google Scholar 

  • Kuhlenbeck, H. (ed.), 1970, Central Nervous System of Vertebrates, Vol. 3, Part I, Structural Elements: Biology of Nervous Tissue, S. Karger, Basel, 818 pp.

    Google Scholar 

  • Le Douarin, N.M., 1980, The ontogeny of the neural crest in avian chimaeras, Nature (London) 286:633–669.

    Google Scholar 

  • Le Lievre, C.S., and Le Douarin, N.M. 1982, The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras, Dev. Biol. 94: 291 – 310.

    Article  Google Scholar 

  • Lenhossek, M.V., 1891, Zur Kenntnis der ersten Entstehung der Nervenzellen und Nervenfasern beim Vogelembryo, Verh. X Int. Med. Congr. Berl. Abth. 2: 115 – 124.

    Google Scholar 

  • Levitt, P.R., and Rakic, P., 1980, Immunoperoxidase localization of glial fibrillary acid protein in radial glial cells and astrocytes of the developing rhesus monkey brain, J. Comp. Neurol. 193: 815 – 840.

    Google Scholar 

  • Levitt, P., Cooper, M.L., and Rakic, P., 1981, Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis, J. Neurosci. 1: 27 – 39.

    Google Scholar 

  • Levitt, P., Cooper, M.L., and Rakic, P., 1983, Early divergence and changing proportion of neuronal and glial precursor cells in the primate cerebral ventricular zone, Dev. Biol. 96: 427 – 484.

    Article  Google Scholar 

  • Lund, R.D., 1978, Development and Plasticity of the Brain: An Introduction, Oxford University Press, Oxford.

    Google Scholar 

  • Oksche, A., 1968, Die prenatale und vergleichende Entwicklungs geschichte der Neuroglia, Acta Neuropathol. Suppl. 4: 4 – 19.

    Google Scholar 

  • Onteniente, B., Kimura, H., and Maeda, T., 1983, Comparative study of the glial fibrillary protein in vertebrates by PAP immunohistochemistry, J. Comp. Neurol. 215: 427 – 436.

    Google Scholar 

  • Pannese, E., 1974, The histogenesis of the spinal ganglia, Adv. Anat. Embryol Cell Biol. 47: 1 – 97.

    Google Scholar 

  • Polak, M., Haymaker, W., Johnson, J.E., and D’Amelio, F., 1982, Neuroglia and their reaction, in: Histology and Histopathology of the Nervous System( W. Haymaker and R.D. Adams, eds.), Charles C Thomas, Springfield, Illinois, pp. 363 – 480.

    Google Scholar 

  • Rakic, P., 1971, Neuron-glia relationship during granule cell migration in developing cerebellar cortex: A Golgi and electron microscopic study in macaqus rhesus, J. Comp. Neurol. 141: 283 – 312.

    Google Scholar 

  • Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145: 61 – 84.

    Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183:425–427.

    Google Scholar 

  • Rakic, P., 1975a, Timing of major ontogenetic events in the visual cortex of the rhesus monkey, in: Brain Mechanisms in Mental Retardation( N. A. Buchwald and M. Brazier, eds.), Academic Press, New York, pp. 3 – 40.

    Google Scholar 

  • Rakic, P., 1975b, Cell migration and neuronal ectopias in the brain, in: Birth Defects: Orig. Artie. Ser., Morphogenesis and Malformation of the Face and Brain (D. Bergsman, ed.), Alan R. Liss, New York, 9:95–129.

    Google Scholar 

  • Rakic, P., 1976, Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of visual cortex in rhesus monkey, Exp. Brain. Res. Suppl. 1: 244 – 248.

    Google Scholar 

  • Rakic, P., 1981, Neuronal-glia interaction during brain development, TINS4: 184 – 187.

    Google Scholar 

  • Rakic, P., 1982, Early developmental events: Cell lineages, acquisition of neuronal positions, and areal and laminar development, Neurosci. Res. Prog. Bull. 20: 439 – 451.

    Google Scholar 

  • Ramon y Cajal, S., 1911, Histologic du Systeme Nerveux de VHomme et des Vertebres, Vol. 2, Paris, A. Maloine; reprinted by Consejo Superior de Investigaciones Cientificas, Instituto Ramon y Cajal, Madrid.

    Google Scholar 

  • Retzius, G., 1894, Die Neuroglia des Gehirns beim Meuschen und bei Saugethieren, Biol. Untersuchungen (New Ser.)6: 1 – 24.

    Google Scholar 

  • Sauer, F.C., 1935, The cellular structure of the neural tube, J. Comp. Neurol. 63: 13 – 23.

    Article  Google Scholar 

  • Sauer, M.E., and Chittenden, A.C., 1959, Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: Evidence for intermitotic migration of nuclei, Exp. Cell Res. 16: 1 – 6.

    Article  PubMed  CAS  Google Scholar 

  • Schaper, A., 1897, The earliest differentiation in the central nervous system of vertebrates, Science5: 430 – 431.

    Google Scholar 

  • Schmechel, D.E., and Rakic, P., 1979a, Arrested proliferation of radial glial cells during midges- tation in rhesus monkey, Nature (London)277: 303 – 305.

    Article  CAS  Google Scholar 

  • Schmechel, D.E., and Rakic, P., 1979b, A Golgi study of radial glial cells in developing monkey telecephalon: Morphogenesis and transformation into astrocytes, Anat. Embryol. 156: 115 – 152.

    Article  CAS  Google Scholar 

  • Sidman, R.L., and Rakic, P., 1973, Neuronal migration, with special reference to developing human brain: A review, Brain Res. 62: 1 – 35.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R.L., Maile, I.L., and Feder, N., 1959, Cell proliferation in the primitive ependymal zone: An autoradiographic study of histogenesis in the nervous system, Exp. Neurol. 1: 322 – 333.

    Google Scholar 

  • Stensaas, L.J., 1967, The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. I. Fifteen millimeter stage, spongioblast morphology, J. Comp. Neurol. 129: 59 – 70.

    Article  Google Scholar 

  • Strichartz, G.R., Aguayo, A.J., Cowan, M.W., Distel, H., Lim, L., McKhann, G.M., Mugnaini, E., Rakic, P., Rickmann, M.J., Spitzer, N.C., Webster, H.F., 1982, Ontogeny. State of the art in: Neuronal-Glial Cell Interrelationship(T.A. Sears, ed.) Springer-Verlag, Berlin, pp. 93 – 114.

    Google Scholar 

  • Tapscott, S.J., Bennett, G.S., and Holtzer, H., 1981, Neuronal precursor cells in the chick neural tube express neurofilament proteins, Nature (London) 292:836–838.

    Google Scholar 

  • Volpe, J.J. (ed.), 1981 Neurology of the Newborn, W.B. Saunders, Philadelphia, 648 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Rakic, P. (1984). Emergence of Neuronal and Glial Cell Lineages in Primate Brain. In: Black, I.B. (eds) Cellular and Molecular Biology of Neuronal Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2717-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2717-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9686-7

  • Online ISBN: 978-1-4613-2717-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics