Advertisement

The Ultrastructure of Interacting Endocrine and Target Cells

  • Bonnie Joy Sedlak

Abstract

A study of cell structure alone is inherently interesting, but it is far less informative than a study which attempts to elucidate the functions reflected in cellular morphology. In developmental biology, the focus is on cellular changes occurring with time. How does the ultrastructure of a cell change as it matures and what is the functional significance of these changes? Since the development of insects is controlled by hormonal cues, a study of the developing endocrine glands and their target tissues interpreted in the context of their own endocrine environment presents a unique opportunity to determine a structural basis for endocrine activity and to define interactions between these tissues. One of the best studied insects from this point of view is Manduca sexta. In this tobacco hornworm, the titers of various hormones have been carefully determined and the ultrastructures of certain endocrine glands and target tissues have been recorded. This review will concentrate on the work carried out with this insect, but will refer to work with other insects where appropriate.

Keywords

Larval Instar Juvenile Hormone Tobacco Hornworm Corpus Allata Juvenile Hormone Titer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, S. K., and King, R. C., 1969, A comparative study on ring glands from wild type and l(2)gl mutant Drosophila melanogaster, J. Morphol. 129: 171 – 200.PubMedGoogle Scholar
  2. Agui, N., and Hiruma, K., 1977, Ecdysone as a feedback regulator for the neurosecretory brain cells in Mamestra brassicae, J. Insect Physiol. 23: 1393 – 1396.Google Scholar
  3. Agui, N., Yagi, S., and Fukaya, N., 1969, Induction of molting of cultivated integuments taken from a diapausing rice stem borer larva in presence of ecdysterone (Lipidoptera, Pyralidae), Appl. Entomol. Zool. 4: 156 – 157.Google Scholar
  4. Agui, N., Granger, N. A., Gilbert, L. I., and Bollenbacher, W. E., 1979, Cellular localization of the insect prothoracicotropic hormone: In vitro assay of a single neurosecretory cell, Proc. Natl. Acad. Sci. USA 76: 5694 – 5698.PubMedGoogle Scholar
  5. Agui, N., Bollenbacher, W. E., Granger, N. A., and Gilbert, L. I., 1980, Corpus allatum is release site for insect prothoracicotropic hormone, Nature (London) 285: 669 – 670.Google Scholar
  6. Baehr, J. C., Cassier, P., and Fain-Maurel, M. A., 1973, Contribution expérimentale et infrastructurale a l’etude de la dynamique de corpus allatum de Rhodnius prolixus Stal: Influence de la nutrition, de l’activité ovarienne, de la pars intercerebralis et de ses connections, Arch. Zool. Exp. Gen. 114: 611 – 626.Google Scholar
  7. Beaulaton, J., 1968, Modifications ultrastructurales des cellules sécrétrices de la glande prothoracique de vers à soie au cours des deux derniers ages larvaires. I. Le chondriome et ses relations avec le réticulum agranulaire, J. Cell Biol. 39: 501 – 525.PubMedGoogle Scholar
  8. Bell, R. A., and Joachim, F. G., 1976, Techniques for rearing laboratory colonies of tobacco horn worms and pink bollworms, Ann. Entomol. Soc. Am. 69: 365 – 373.Google Scholar
  9. Bergot, B. J., Hall, M. S., Furrer, A. A., and Schooley, D. A., 1984, Juvenile hormone titers in Manduca sexta throughout the life cycle, J. Insect Physiol. Submitted.Google Scholar
  10. Bjersing, L., 1967, On the ultrastructure of granulosa lutein cells in porcine corpus luteum, Z. Zellforsch. Mikrosk. Anatl. 82: 187 – 211.Google Scholar
  11. Blazsek, I., and Mala, J., 1978, Steroid transport through the surface of the prothoracic gland cells in Galleria mellonella L., Cell Tissue Res. 187: 507 – 513.PubMedGoogle Scholar
  12. Blazsek, I., Balaz, A., Novak, J. A., and Mala, J., 1975, Ultrastructural study of prothoracic glands of Galleria mellonella L. in the penultimate, last larval, and pupal stages, Cell Tissue Res. 158: 269 – 280.PubMedGoogle Scholar
  13. Bloom, W., and Fawcett, D. W., 1975, A Textbook of Histology, pp. 518–519, Saunders, Philadelphia.Google Scholar
  14. Bodenstein, D., 1955, Humoral agents in insect metamorphosis. In Aspects of Synthesis and Order in Growth, edited by D. Rudnick, Princeton University Press, Princeton, N.J.Google Scholar
  15. Bollenbacher, W. E., Vedeckis, W., Gilbert, L. I., and O’Connor, J. D., 1975, Ecdysone titers and prothoracic gland activity during the larval-pupal development of Manduca sexta, Dev. Biol. 44: 46 – 53.PubMedGoogle Scholar
  16. Bollenbacher, W. E., Zvenko, H., Kumaran, A. K., and Gilbert, L. I., 1978, Changes in ecdysone content during post-embryonic development of the wax moth, Galleria mellonella: The role of the ovary, Gen. Comp. Endocrinol. 34: 169 – 179.PubMedGoogle Scholar
  17. Bollenbacher, W. E., Smith, S. L., Goodman, W., and Gilbert, L. I., 1981, Ecdysteroid titer during larval-pupal-adult development of the tobacco hornworm, Manduca sexta, Gen. Comp. Endocrinol. 44: 302 – 306.Google Scholar
  18. Bouligand, M. Y., 1965, Sur une architecture torsadée répandue dans de nombreuses cuticles d’Arthropodes, C.R. Acad. Sci. 261: 3665 – 3668.Google Scholar
  19. Bowers, W. S., Ohta, T., Cleere, J. S., and Marsella, P. A., 1976, Discovery of insect antijuvenile hormones in plants, Science 193: 542 – 547.PubMedGoogle Scholar
  20. Bownes, M., 1982, Hormonal and genetic regulation of vitellogenesis in Drosophila, Q. Rev. Biol. 57: 247 – 274.PubMedGoogle Scholar
  21. Calvez, B., Hirn, M., and DeReggi, M., 1976, Ecdysone changes in the haemolymph of two silkworms (Bombyx mori and Philosamia cynthia) during larval and pupal development, FEBS Lett. 71: 57 – 61.Google Scholar
  22. Cassier, P., 1979, The corpora allata of insects, Int. Rev. Cytol. 57: 1 – 73.Google Scholar
  23. Charpin, P., 1975, Evolution ultrastructurale des corps allatum au cours du dernier stade larvaire chez Choleva augustata Fab. (Coléoptères Catopidae de la sous-famille des Catopuae), C.R. Acad. Sci. Ser. D 280: 1997 – 1999.Google Scholar
  24. Christensen, A. K., 1965, The fine structure of testicular interstitial cells in guinea pigs, J. Cell Biol. 26: 911 – 934.PubMedGoogle Scholar
  25. Cymborowski, B., and Stolarz, G., 1979, The role of juvenile hormone during larval-pupal transformation of Spodoptera littoralis: Switchover in the sensitivity of the prothoracic gland to juvenile hormone, J. Insect Physiol. 25: 939 – 942.Google Scholar
  26. Dean, R. L., Bollenbacher, W. E., Locke, M., Smith, S. L., and Gilbert, L. I., 1980, Haemolymph ecdysteroid levels and cellular events in the intermoult/moult sequence of Calpodes ethlius, J. Insect Physiol. 26: 267 – 280.Google Scholar
  27. deKort, C. A. D., and Granger, N. A., 1981, Regulation of the juvenile hormone titer, Annu. Rev. Entomol. 26: 1 – 28.Google Scholar
  28. Delbecque, J. P., Hirn, M., Delachambre, J., and DeReggi, M., 1978, Cuticular cycle and molting hormone levels during the metamorphosis of Tenebrio molitor (Insecta: Coleoptera), Dev. Biol. 64: 11 – 30.PubMedGoogle Scholar
  29. Deleurance, S., and Charpin, S., 1978, Ultrastructural dynamics of the corpus allatum of Choleva augustata Fab. (Coleoptera, Catopidae), Cell Tissue Res. 191: 151 – 160.PubMedGoogle Scholar
  30. Dorn, A., 1973, Electron microscopic study on the larval and adult corpus allatum of Oncopeltus fasciatus Dallas, Z. Zellforsch. Mikrosk. Anat. 145: 447 – 458.PubMedGoogle Scholar
  31. Elliott, H. J., 1976, Structural analysis of the corpus allatum of an aphid Aphis craccivora, J. Insect Physiol. 22: 1275 – 1280.Google Scholar
  32. Feyereisen, R., Johnson, G., Koener, J., Stay, B., and Tobe, S. S., 1981, Precocenes as pro-allatocidins in adult female Diploptera punctata: A functional and ultrastructural study, J. Insect Physiol. 27: 855 – 866.Google Scholar
  33. Filshie, B. K., 1970, The fine structure and deposition of the larval cuticle of the sheep blowfly (Lucilia cuprina), Tissue Cell 2: 479 – 498.PubMedGoogle Scholar
  34. Filshie, B. K., 1982, Fine structure of the cuticle of insects and other arthropods. In Insect Ultrastructure, edited by R. C. King and H. Akai, vol. 1, pp. 281 – 312, Plenum Press, New York.Google Scholar
  35. Friedel, T., Feyereisen, R., Meindall, E. C., and Tobe, S., 1980, The allatostatic effect of 20-hydroxyecdysone on the adult viviparous cockroach, Diploptera punctata, J. Insect Physiol. 26: 665 – 670.Google Scholar
  36. Gersch, M., Birkenbeil, H., and Ude, J., 1975, Ultrastructure of the prothoracic gland cells of the last instar of Galleria mellonella in relation to the state of development, Cell Tissue Res. 160: 389 – 397.PubMedGoogle Scholar
  37. Giacomelli, F., Wiener, J., and Spiro, D., 1965, Cytological alterations related to stimulation of the zona glomerulosa of the adrenal gland, J. Cell Biol. 26: 499 – 522.PubMedGoogle Scholar
  38. Gilbert, L. I., and Schneiderman, H. A., 1959, Prothroacic gland stimulation by juvenile hormone extracts of insects, Nature (London) 184: 171 – 173.Google Scholar
  39. Glitho, I., Delbecque, J. P., and Delachambre, J., 1979, Prothoracic gland involution related to molting hormone levels during the metamorphosis of Tenebrio molitor, J. Insect Physiol. 25: 187 – 192.Google Scholar
  40. Gnatzy, W., and Romer, F., 1981, Morphogenesis of mechanoreceptor and epidermal cells of crickets Gryllus bimaculatus during the last instar and its relation to molting hormone level, Cell Tissue Res. 213: 369 – 392.Google Scholar
  41. Goltzene, F., and Porte, A., 1978, Endocrine control by neurosecretory cells of the pars intercerebralis and the corpora allata during the earlier phases of vitellogenesis in Locusta-migratoria-migratorioides (Orthoptera), Gen. Comp. Endocrinol. 35: 35 – 45.PubMedGoogle Scholar
  42. Greenstein, M. E., 1972, The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. I. Generalized epidermal cells, J. Morphol. 136: 1 – 22.PubMedGoogle Scholar
  43. Herman, W. S., 1967, The ecdysial glands of arthropods, Int. Rev. Cytol. 22: 269 – 374.PubMedGoogle Scholar
  44. Herman, W. S., and Gilbert, L. I., 1966, The neuroendocrine system of Hyalophora cecropia (L.) (Lepidoptera: Saturniidae). I. The anatomy and histology of the ecdysial glands, Gen. Comp. Endocrinol. 7: 275 – 291.Google Scholar
  45. Hiruma, K., Shimada, H. and Yagi, S., 1978, Activation of the prothoracic gland by juvenile hormone and prothoracicotropic hormone in Mamestra brassicae, J. Insect Physiol. 24: 215 – 220.Google Scholar
  46. Johnson, R. A., and Hill, S., 1973, The activity of the corpora allata in the fourth and fifth larval instars of the migratory locust, J. Insect Physiol. 19: 1921 – 1932.Google Scholar
  47. Khan, T. R., Singh, S. B., Singh, R. K., and Singh, T. K., 1978, Neurosecretory control of corpora allata activity in cockroach Periplaneta americana, Experientia 34: 49 – 51Google Scholar
  48. King, D. S., Bollenbacher, W. E., Borst, D. W., Vedeckis, W. V., O’Connor, J. D., Ittycheriah, P. I., and Gilbert, L. I., 1974, The secretion of ecdysone by the prothoracid glands of Manduca sexta in vitro, Proc. Natl. Acad. Sci. USA 71: 793 – 796.PubMedGoogle Scholar
  49. King, R. C., 1970, Ovarian Development in Drosophila melanogaster, Academic Press, New York.Google Scholar
  50. King, R. C., Aggarwal, S. K., and Bodenstein, D., 1966, The comparative submicroscopic cytology of the corpus allatum-corpus cardiacum complex of Drosophila melanogaster, J. Exp. Zool. 161: 151 – 176.Google Scholar
  51. Krogh, I. M., and Normann, I. C., 1977, The corpus cardiacum neurosecretory cells of Schistocerca gregaria: Electron microscopy of resting and secreting cells, Acta Zool. 58: 69 – 78.Google Scholar
  52. Lafont, R., Mauchamp, B., Blais, C., and Pennetier, J. L., 1977, Ecdysone and imaginal disc development during the last larval instar of Pieris brassicae, J. Insect Physiol. 23: 277 – 283.PubMedGoogle Scholar
  53. Lanzrein, B., Gentinetta, V., Fehr, R., and Lüscher, M., 1978, Correlation between hemolymph juvenile hormone titer, corpus allatum volume and corpus allatum in vivo and in vitro activity during occyte maturation in a cockroach (Nauphoeta cinerea), Gen. Comp. Endocrinol. 36: 339 – 345.Google Scholar
  54. Liechty, L., and Sedlak, B. J., 1978, The ultrastructure of precocene-induced effects on the corpora allata of the adult milkweed bug, Oncopeltus fasciatus, Gen. Comp. Endocrinol. 36: 433 – 436.Google Scholar
  55. Locke, M., 1966, The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Herperiidae), J. Morphol. 118: 461 – 494.PubMedGoogle Scholar
  56. Locke, M., 1969a, The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect, Tissue Cell 1: 103 – 154.Google Scholar
  57. Locke, M., 1969b, The structure of an epidermal cell during the development of the protein epicuticle and the uptake of molting fluid in an insect, J. Morphol. 127: 7 – 40.Google Scholar
  58. Locke, M., 1974, The structure and formation of the integument in insects. In The Physiology of Insecta, edited by M. Rockstein, Vol. 6, 123 – 213, Academic Press, New YorkGoogle Scholar
  59. Locke, M., 1976, The role of plasma membrane plaques and Golgi complex vesicles in cuticle deposition during the molt-intermolt cycle. In The Insect Integument, edited by H. R. Hepburn, pp. 237 – 258, Elsevier/North-Holland, Amsterdam.Google Scholar
  60. Locke, M., and Krishnan, N., 1973, The formation of the ecdysial droplets and the ecdysial membrane in an insect, Tissue Cell 5: 441 – 450.PubMedGoogle Scholar
  61. Mandaron, P., 1976, Ultrastructure des disques de patte de drosophile cultives in vitro: Evagination, sécrétion de la cuticle nymphale et apolysis, Wilhelm Roux Arch. Dev. Biol. 179: 185 – 196.Google Scholar
  62. Melnikova, F. J., and Panov, A. A., 1975, Ultrastructure of the larval corpus allatum of Hyphantria cunea, Cell Tissue Res. 162: 395 – 410.PubMedGoogle Scholar
  63. Mordue, W., 1965, Studies on oocyte production and associated histological changes in the neuroendocrine sytem in Tenebrio molitor L., J. Insect Physiol. 11: 493 – 503.PubMedGoogle Scholar
  64. Noble-Nesbitt, J., 1967, Aspects of the structure, formation, and function of some insect cuticles. In Insects and Physiology, edited by J. W. L. Beamentand J. E. Treherne, pp. 3 – 16, Oliver & Boyd, Edinburgh.Google Scholar
  65. Noirot, C., and Noirot-Timothée, C., 1971, La cuticle proctodéale des insectes. II. Formation durant la mue, Z. Zellforsch. Mikrosk. Anat. 113: 361 – 387.PubMedGoogle Scholar
  66. Nordmann, J. J., 1977, Ultrastructural appearance of neurosecretory granules in the sinus gland of the crab after different fixation procedures, Cell Tissue Res. 185: 557 – 563.PubMedGoogle Scholar
  67. Norman, T. C., 1969, Experimentally induced exocytosis of neurosecretory granules, Exp. Cell Res. 55: 285 – 287.Google Scholar
  68. Oberlander, H., Leach, C. E., and Tomblin, C., 1973, Cuticle deposition in imaginal discs of three species of Lepidoptera: Effect of ecdysones in vitro, J. Insect Physiol. 19: 993 – 998.Google Scholar
  69. Odhiambo, T. R., 1966a, Morphometric changes and the hormonal activity of the corpus allatum in the adult male of the desert locust, J. Insect Physiol. 12: 655 – 665.Google Scholar
  70. Odhiambo, T. R., 1966b, The fine structure of the corpus allatum of the sexually inactive male of the desen locust, J. Insect Physiol. 12: 819 – 828.Google Scholar
  71. Palévody, C., and Grimal, A., 1976, Variations cytologiques des corps allates au cours du cycle reproducteur du collembole Folsomia Candida, J. Insect Physiol. 22: 63 – 72.Google Scholar
  72. Panov, A. A., and Bassurmanova, O. K., 1970, Fine structure of the glands in inactive and active corpus allatum of the bug, Eurygaster integriceps, J. Insect Physiol. 16: 1265 – 1281.Google Scholar
  73. Poodry, C. A., and Schneiderman, H. A., 1970, The ultrastructure of the developing leg of Drosophila melanogaster, Wilhelm Roux Arch. Dev. Biol. 166: 1 – 44.Google Scholar
  74. Raabe, M., 1982, Insect Neurohormones, Plenum Press, New York.Google Scholar
  75. Raina, A. K., and Borg, T. K., 1980, Corpora cardiaca allata complex of the larvae of the pink bollworm Pectinophora gossypiella: An ultrastructural study in relation to diapause, Acta. Zool. 61: 65 – 78.Google Scholar
  76. Rhodin, J. A. G., 1971, Ultrastructure of the adrenal cortex of the rat under normal and experimental conditions, J. Ultrastruct. Res. 24: 23 – 71.Google Scholar
  77. Richards, G., 1981, The radioimmune assay of ecdysteroid titres in Drosophila melanogaster, Mol. Cell Endocrinol. 21: 181 – 197.PubMedGoogle Scholar
  78. Riddiford, L. M., 1976, Hormonal control of insect epidermal cell commitment in vitro, Nature (London) 259: 115 – 117.Google Scholar
  79. Riddiford, L. M., 1981, Hormonal control of epidermal cell development, Am. Zool. 21: 751 – 768.Google Scholar
  80. Romer, F., 1971, Die Prothorakaldrusen der Larvae von Tenebrio molitor L. (Tenebrionidae, Coleoptera) und ihre Veranderungen warhend eines Häutungszyklus, Z. Zellforsch. Mikrosk. Anat. 122: 425 – 455.PubMedGoogle Scholar
  81. Romer, F., 1974, Ultrastructural changes of the oenocytes of Gryllus bimaculatus (Saltatoria, Insecta) during the molting cycle, Cell Tissue Res. 114: 27 – 46.Google Scholar
  82. Ryerse, J. S., and Locke, M., 1978, Ecdysterone-mediated cuticle deposition and the control of growth in insect trachea, J. Insect Physiol. 24: 541 – 550.Google Scholar
  83. Safranek, L., Cymborowski, B., and Williams, C., 1980, Effects of juvenile hormone on ecdysone-dependent development in the tobacco hornworm, Manduca sexta, Biol. Bull. 301: 248 – 256.Google Scholar
  84. Scharrer, B., 1964a, Histophysiological studies on the corpus allatum of Leucophaea maderae. IV. Ultrastructure during normal activity cycle, Z. Zellforsch. Mikrosk. Anat. 62: 125 – 148.Google Scholar
  85. Scharrer, B., 1964b, The fine structure of blattarian prothoracic glands, Z. Zellforsch. Mikrosk. Anat. 64: 301 – 326.Google Scholar
  86. Scharrer, B., 1966, Ultrastructural study of the regressing prothoracic glands of blattarian insects, Z. Zellforsch. Mikrosk. Anat. 69: 1 – 21.PubMedGoogle Scholar
  87. Scharrer, B., 1978, Histophysiological studies on the corpus allatum of Leuophaea maderae. VI. Ultrastructural characteristics in gonadectomized females, Cell Tissue Res. 194: 533 – 545.PubMedGoogle Scholar
  88. Scharrer, B., and Wurzelmann, S., 1974, Observations on synaptoid vesicles in insect neurons, Zool. Jahrb. Physiol. 78: 387 – 396.Google Scholar
  89. Schooneveld, H., 1979, Precocene induced necrosis and hemocyte mediated breakdown of corpora allata in nymphs of the locust Locusta migratoria, Cell Tissue Res. 203: 25 – 34.PubMedGoogle Scholar
  90. Sedlak, B. J., 1981, An ultrastructural study of neurosecretory fibers within the corpora allata of Manduca sexta, Gen. Comp. Endocrinol. 44: 207 – 218.PubMedGoogle Scholar
  91. Sedlak, B. J., 1984, The structure of endocrine glands. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, edited by G. A. Kerkut and L. I. Gilbert, vol. 7, Pergamon Press, Elmsford, N.Y.Google Scholar
  92. Sedlak, B. J., and Gilbert, L. I., 1976a, Epidermal cell development during the pupal-adult metamorphosis of Hyalophora cecropia, Tissue Cell 8: 637 – 648.Google Scholar
  93. Sedlak, B. J., and Gilbert, L. I., 1976b, Effects of ecdysone and juvenile hormone on epidermal cell development in Hyalophora cecropia, Tissue Cell 8: 649 – 658.Google Scholar
  94. Sedlak, B. J., and Gilbert, L. I., 1979, Correlations between epidermal cell structure and endogenous hormone titers during the fifth larval instar of the tobacco hornworm, Manduca sexta, Tissue Cell 11: 643 – 653.Google Scholar
  95. Sedlak, B. J., Marchione, L., Devokin, B., and Davino, R., 1983, Correlations between endocrine gland ultrastructure and hormone titers in the fifth larval instar of Manduca sexta, Gen. Comp. Endocrinol. 52: 291 – 310.PubMedGoogle Scholar
  96. Sehnal, F., Maroy, P., and Mala, J., 1981, Regulation and significance of ecdysteroid titre fluctuations in lepidopterous larvae and pupae, J. Insect Physiol. 27: 535 – 544.Google Scholar
  97. Siew, Y. C., 1965, The endocrine control of adult reproductive diapause in the crysomelid beetle, Galeruca tanaceti L., J. Insect Physiol. 11: 463 – 479.PubMedGoogle Scholar
  98. Siew, Y. C., and Gilbert, L. I., 1971, Effects of moulting hormone and juvenile hormone on insect endocrine gland activity, J. Insect Physiol. 17: 2095 – 2104.PubMedGoogle Scholar
  99. Smith, R. E., and Farquhar, M. G., 1966, Lysosome functions in the regulation of the secretory process in cells of the anterior pituitary gland, J. Cell Biol. 31: 319 – 347.PubMedGoogle Scholar
  100. Srivastava, U. S., 1958, Prothoracic glands in Tenebrio molitor L. (Coleoptera, Tenebrionidae), Nature (London) 181: 1668.Google Scholar
  101. Stay, B., and Tobe, S. S., 1977, Control of juvenile hormone biosynthesis during the reproductive cycle of a viviparous cockroach. I. Activation and inhibition of corpora allata, Gen. Comp. Endocrinol. 33: 531 – 540.PubMedGoogle Scholar
  102. Steel, C. G. H., Bollenbacher, W. E., Smith, S. L., and Gilbert, L. I., 1982, Haemolymph ecdysteroid titers during larval adult development in Rhodnius prolixus: Correlations with moulting hormone action and brain neurosecretory cell activity, J. Insect Physiol. 28: 519 – 525.Google Scholar
  103. Takeda, N., 1977, Histo-physiological studies on the corpus allatum during prepupal dispause in Monema flavescens, J. Morphol. 153: 245 – 262.PubMedGoogle Scholar
  104. Thomsen, E., and Thomsen, M., 1970, Fine structure of the corpus allatum of the female blowfly, Calliphora erythrocephala, Z. Zellforsch. Mikrosk. Anat. 110: 40 – 60.Google Scholar
  105. Tobe, S. S., and Pratt, G., 1975, The synthetic activity and glandular volume of the corpus allatum during ovarian maturation in the desert locust Schistocerca gregaria, Life Sci. 17: 417 – 422.PubMedGoogle Scholar
  106. Tobe, S. S., and Saleuddin, A. S. M., 1977, Ultrastructural localization of juvenile hormone biosynthesis by insect corpora allata, Cell Tissue Res. 183: 25 – 32.PubMedGoogle Scholar
  107. Tombes, A. S., and Smith, D. S., 1970, Ultrastructural studies on the corpora cardiaca-allata complex of the adult alfalfa weevil, Hypera postica, J. Morphol. 132: 137 – 148.Google Scholar
  108. Truman, J. W., 1972, Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. J. Exp. Biol. 57: 805 – 820.Google Scholar
  109. Unnithan, G. C., Bern, H. A., and Nair, K. K., 1977, Ultrastructural analysis of the neuroendocrine apparatus of Oncopeltus fasciatus (Heteroptera), Acta Zool. 52: 117 – 143.Google Scholar
  110. Unnithan, G. C., Nair, K. K., and Syed, A., 1980, Precocene-induced metamorphosis in the desert locust, Schistocerca gregaria, Experientia 36: 135 – 156.Google Scholar
  111. Vince, R. K., and Gilbert, L. I., 1977, Juvenile hormone esterase activity in precisely timed last instar larval and pharate pupae of Manduca sexta, Insect Biochem. 7: 115 – 120.Google Scholar
  112. Waku, Y., and Gilbert, L. I., 1964. The corpora allata of the silkmoth, Hyalophora cecropia: An ultrastructural study, J. Morphol. 115: 69 – 96.PubMedGoogle Scholar
  113. Wielgus, J. J., and Gilbert, L. I., 1978, Epidermal cell development and control of cuticle deposition during the last instar of Manduca sexta, J. Insect Physiol. 24: 629 – 637.Google Scholar
  114. Wielgus, J. J., Bollenbacher, W. E., and Gilbert, L. I., 1979, Correlations between epidermal DNA synthesis and haemolymph ecdysteroid titer during the last larval instar of the tobacco hornworm, Manduca sexta, J. Insect Physiol. 25: 9 – 16.Google Scholar
  115. Wigglesworth, V. B., 1964, The hormonal regulation of growth and reproduction in insects, Adv. Insect Physiol. 2: 247 – 336.Google Scholar
  116. Yin, C. M., and Chippendale, G. M., 1979, Ultrastructural characteristics of insect corpora allata in relation to larval diapause, Cell Tissue Res. 197: 453 – 462.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Bonnie Joy Sedlak
    • 1
  1. 1.Developmental Biology CenterUniversity of CaliforniaIrvineUSA

Personalised recommendations