Aging and Hypothalamic Regulation of Metabolic, Autonomic, and Endocrine Function

  • C. Robert Almli

Abstract

The aging process is a complex and mysterious phenomenon that appears to affect all mammals as they evolve through senescence and ultimately death. During the aging process, widespread and heterogeneous changes may occur in a variety of functions including cognitive, mental, sensory, motor, metabolic, autonomic, and/or endocrine function. In spite of the fact that a variety of functions may be affected during the aging process, there are tremendous individual and species differences with respect to the pattern of functional changes displayed during aging, and furthermore the functional changes associated with aging may be displayed in a heterogeneous fashion within individuals, i.e., the whole body does not age at the same rate. The widespread and diverse nature of the functional changes that may be associated with aging underscores the complexity of the aging process. This complexity has served to reinforce the notion that aging, and the rate of aging, are products of some genetic program-environment interaction.

Keywords

Cholesterol Obesity Dementia Cortisol Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almli, C. R., 1978, The ontogeny of feeding and drinking: Effects of early brain damage, Neurosci. Biobehav. Rev. 2:281–300.CrossRefGoogle Scholar
  2. Almli, C. R., and Weiss, C. S., 1975, Behavioral and physiological responses to dipsogens: A comparative analysis, Physiol. Behav. 14:633–641.PubMedCrossRefGoogle Scholar
  3. Almli, C. R., Hill, D. L., McMullen, N. T., and Fisher, R. S., 1979, Newborn rats: Lateral hypothalamic damage and consummatory-sensorimotor ontogeny, Physiol. Behav. 22:767–773.PubMedCrossRefGoogle Scholar
  4. Ban, T., 1975, Fiber connections in the hypothalamus and some autonomic functions, Pharmacol. Physiol. Behav. 3(Suppl. 1):3–13.Google Scholar
  5. Bauer, J., 1944, Constitution and Disease, Heinemann, London.Google Scholar
  6. Berlin, M., and Wallace, R. B., 1976, Aging and the central nervous system, Exp. Aging Res. 2:125–164.PubMedCrossRefGoogle Scholar
  7. Bourne, G. H., 1973, Lipofuscin, Prog. Brain Res. 40:187–201.PubMedCrossRefGoogle Scholar
  8. Brobeck, J. R., Tepperman, J., and Long, C. N. H., 1943, Experimental hypothalamic hyperphagia in the albino rat, Yale J. Biol. Med. 15:831–853.PubMedGoogle Scholar
  9. Brody, H., 1973, Aging of the vertebrate brain, in: Development and Aging in the Nervous System( M. Rockstein, ed.), Academic Press, New York, pp. 131–134.Google Scholar
  10. Comfort, A., 1964, Aging, the Biology of Senescence, Holt, Rinehart and Winston, New York.Google Scholar
  11. Davis, J. R., 1977, Decreased metabolic rates contingent upon lateral hypothalamic lesion-induced body weight losses in male rats, J. Comp. Physiol. Psychol. 91:1019–1031.CrossRefGoogle Scholar
  12. Dilman, V. M., 1976, The hypothalamic control of aging and age associated pathology: The elevation mechanism of aging, in: Hypothalamus, Pituitary and Aging( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 634–667.Google Scholar
  13. Dilman, V. M., 1979, Hypothalamic mechanisms of aging and of specific age pathology. V. A model for the mechanism of human specific age pathology and natural death, Exp. Gerontol. 14:287–300.PubMedCrossRefGoogle Scholar
  14. Everitt, A. V., 1976a, The nature and measurement of aging, in: Hypothalamus, Pituitary and Aging( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 5–42.Google Scholar
  15. Everitt, A. V., 1976b, The thyroid gland, metabolic rate and aging, in: Hypothalamus, Pituitary and Aging( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 511–528.Google Scholar
  16. Everitt, A. V., 1976c, Conclusion: Aging and its hypothalamic-pituitary control, in: Hypothalamus, Pituitary and Aging( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 676–702.Google Scholar
  17. Finkelstein, J. W., Roffwaig, H. P., Boyar, H. M., Kream, J., and Hellman, L., 1972, Age related changes in the twenty-four-hour spontaneous secretion of growth hormone, J. Clin. Endocrinol. 35:665–670.CrossRefGoogle Scholar
  18. Fisher, R. S., and Almli, C. R., 1979, Postnatal ontogeny of hypothalamic extracellular unit activity in the rat, Neurosci. Abstr. 5:159.Google Scholar
  19. Fisher, R. S., Almli, C. R., and Parsons, S., 1978, Infant rats: Ventromedial hypothalamic damage and the development of obesity and neuroendocrine dysfunction, Physiol. Behav. 21:369–382.PubMedCrossRefGoogle Scholar
  20. Frohman, L. A., Bernardis, L. L., Schnatz, J. D., and Burek, L., 1969, Plasma insulin and triglyceride levels after hypothalamic lesions in weanling rats, Am. J. Physiol. 216:1496–1501.PubMedGoogle Scholar
  21. Frolkis, V. V., 1976, The hypothalamic mechanisms of aging, in: Hypothalamus, Pituitary and Aging( A. V. Everitt and J. A. Burgess, eds.), Charles C. Thomas, Springfield, Illinois, pp. 614–633.Google Scholar
  22. Froklis, V. V., Bezrukov, V. V., Duplenko, Yu. K., and Genis, E. D., 1972, The hypothalamus in aging, Exp. Gerontol. 7:169–184.CrossRefGoogle Scholar
  23. Goldman, J. K., and Bernardis, L. L., 1975, Gluconeogenesis in weanling rats with hypothalamic obesity, Horm. Metab. Res. 7:148–152.CrossRefGoogle Scholar
  24. Gray, R. H., 1971, The effects of bilateral destruction of the hypothalamic feeding center on fasting blood sugar, glucose absorption and glucose tolerance in the rat, Aust. J. Exp. Biol. Med. Sci. 49:225–232.PubMedCrossRefGoogle Scholar
  25. Groen, J. J., 1959, General physiology of aging, Geriatrics 14:318–331.PubMedGoogle Scholar
  26. Gutstein, W. H., Harrison, J., Parl, F., Kiu, G., and Avitable, M., 1978, Neural factors contribute to atherogenesis, Science 199:449–451.PubMedCrossRefGoogle Scholar
  27. Hales, C. N., and Kennedy, G. C., 1964, Plasma Glucose, non-esterified fatty acid and insulin concentrations in hypothalamic-hyperphagic rats, Biochem. J. 90:620–624.PubMedGoogle Scholar
  28. Hetherington, A. W., 1941, Th relation of various hypothalamic lesions to adiposity and other phenomena in the rat, Am. J. Physiol. 140:89–92.Google Scholar
  29. Hill, D. L., Almli, C. R., Fisher, R. S., and Williams, D., 1981, VMH damage in newborn rats: Growth, ingestion and neuroendocrine dysfunction, Exp. Neurol. 71:191–202.PubMedCrossRefGoogle Scholar
  30. Hinman, D. J., and Griffith, D. R., 1973, Effects of ventromedial hypothalamic lesions on thyroid secretion rate in rats, Horm. Metab. Res. 5:48–50.PubMedCrossRefGoogle Scholar
  31. Hirano, A., Arumugasamy, N., and Zimmerman, H. M., 1967, Amyotrophic lateral sclerosis: A comparison of Guam and classical cases, Arch. Neurol. 16:357–363.PubMedGoogle Scholar
  32. Kennedy, G. C., 1969, The relation between the central control of appetite, growth and sexual maturation, Guys Hosp. Rep. 118:315–327.PubMedGoogle Scholar
  33. Kennedy, G. C., and Parker, R. A., 1963, The islets of Langerhans in rats with hypothalamic obesity, Lancet 2:981–982.PubMedCrossRefGoogle Scholar
  34. Keys, A., 1952, The age trend of serum cholesterol and of Sf 10-20 (“G”) substance in adults, J. Gerontol. 7:201–206.PubMedGoogle Scholar
  35. Knigge, K. M., Hoffman, G. E., Joseph, S. A., Scott, D. E., Sladek, C. D., and Sladek, J. R., Jr., 1980, Recent advances in structure and function of the endocrine hypothalamus, in: Handbook of the Hypothalamus, Volume 2: Physiology of the Hypothalamus(P. J. Morgane and J. Panksepp, eds.), Marcel Dekker, New York, pp. 63–164.Google Scholar
  36. Korneva, E. A., 1976, Neurohumoral regulation of immunological homeostasis, Hum. Physiol. 2:374–384.Google Scholar
  37. McCay, C. M., Crowell, M. F., and Maynard, L. A., 1935, The effect of retarded growth upon the length of the life span and ultimate body size, J. Nutr. 10:63.Google Scholar
  38. Miller, A. E., Shaai, C. J., and Riegle, G. D., 1976, Aging effects on hypothalamic dopamine and norepinephrine content in the male rat, Exp. Aging Res. 2:475–480.PubMedCrossRefGoogle Scholar
  39. Montemurro, D. G., and Stevenson, J. A. F., 1957, Body composition in hypothalamic obesity derived from estimations of body specific gravity and extracellular fluid volume, Metabolism 6:161–168.PubMedGoogle Scholar
  40. Morgane, P. J., 1961, Medial forebrain bundle and “feeding centers” of the hypothalamus, J. Comp. Neurol. 117:1–25.PubMedCrossRefGoogle Scholar
  41. Morgane, P. J., and Panksepp, J. (eds.), 1979, Handbook of the Hypothalamus, Volume 1: Anatomy of the Hypothalamus, Marcel Dekker, New York.Google Scholar
  42. Morgane, P. J., and Panksepp, J. (eds.), 1980a, Handbook of the Hypothalamus, Volume 2: Physiology of the Hypothalamus, Marcel Dekker, New York.Google Scholar
  43. Morgane, P. J., and Panksepp, J. (eds.), 1980b, Handbook of the Hypothalamus, Volume 3A: Behavioral Studies in the Hypothalamus, Marcel Dekker, New York.Google Scholar
  44. Morgane, P. J., and Panksepp, J. (eds.), 1981, Handbook of the Hypothalamus, Volume 3B: Behavioral Studies of the Hypothalamus, Marcel Dekker, New York.Google Scholar
  45. Morrison, S. D., 1968, The relationship of energy expenditure and spontaneous activity to the aphagia of rats with lesions in the lateral hypothalamus, J. Physiol. 197:325–343.PubMedGoogle Scholar
  46. Nathan, M. A., and Reis, D. J., 1975, Fulminating arterial hypertension with pulmonary edema from release of adrenomedullary catecholamines after lesions of the anterior hypothalamus in the rat, Circ. Res. 37:226–235.PubMedGoogle Scholar
  47. Oomura, Y., 1976, Significance of glucose, insulin, and free fatty acid on the hypothalamic feeding and satiety neurons, in: Hunger: Basic Mechanisms and Clinical Implications( D. Novin, W. Wyrwicka, and G. A. Bray, eds.), Raven Press, New York, pp. 145–157.Google Scholar
  48. Ordy, J. M., and Kaack, G., 1975, Neurochemical changes in composition, metabolism and neurotransmitters in the human brain with age, in: Neurobiology of Aging( J. M. Ordy and K. R. Brizzee, eds.), Plenum Press, New York, pp. 253–285.Google Scholar
  49. Papez, J. W., 1937, A proposed mechanism of emotion, Arch. Neurol. Psychiatr. 38:725–743.Google Scholar
  50. Paunovic, V. R., Petrovic, S., and Jankovic, B. D., 1976, Influence of early postnatal hypothalamic lesions on immune responses of adult rats, Period. Biol. 78:50–57.Google Scholar
  51. Pearl, R., 1905, Biometrical studies on man. I. Variation and correlation in brain weight, Biometrika 4:13–104.Google Scholar
  52. Pfaff, D. W., 1981, Theoretical issues regarding hypothalamic control of reproductive behavior, in: Handbook of the Hypothalamus, Volume 3B: Behavioral Studies of the Hypothalamus(P. J. Morgane and J. Panksepp, eds.), Marcel Dekker, New York, pp. 241–258.Google Scholar
  53. Potvin, A. R., Syndulko, K., Tourtellotte, W. W., Lemmon, J. A., and Potvin, J. H., 1980, Human neurologic function and the aging process, J. Am. Geriatr. Soc. 28:1–8.PubMedGoogle Scholar
  54. Powley, T. L., and Keesey, R. E., 1970, Relationship of body weight to the lateral hypothalamic feeding syndrome, J. Comp. Physiol. Psychol. 70:25–36.PubMedCrossRefGoogle Scholar
  55. Ranson, S. W., and Magoun, H. W., 1939, The hypothalamus, Ergeb. Physiol. 41:56–163.Google Scholar
  56. Sabel, B. A., and Stein, D. G., 1981, Extensive loss of subcortical neurons in the aging rat brain, Exp. Neurol. 73:507–516.PubMedCrossRefGoogle Scholar
  57. Samorajski, T., 1977, Central transmitter substances and aging: A review, J. Am. Geriatr. Soc. 25:337–348.PubMedGoogle Scholar
  58. Scheibel, M. E., and Scheibel, A. B., 1977, Differential changes with aging in old and new cortices, in: The Aging Brain and Senile Dementia( K. Nandy and I. Sherwin, eds.), Plenum Press, New York, pp. 39–58.Google Scholar
  59. Steffens, A. B., Mogenson, G. J., and Stevenson, J. A. F., 1972, Blood glucose, insulin and free fatty acids after stimulation and lesions of the hypothalamus, Am. J. Physiol. 222:1446–1452.PubMedGoogle Scholar
  60. Stein, M., Schiavi, R. C., and Camerino, M., 1976, Influence of brain and behavior on the immune system, Science 191:435–440.PubMedCrossRefGoogle Scholar
  61. Young, C. M., Bloudin, J., Tensuan, R., and Fryer, J. H., 1963, Body composition studies of older women, thirty to seventy years of age, Ann. N.Y. Acad. Sci. 110:589–607.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. Robert Almli
    • 1
  1. 1.Departments of Preventive Medicine, Anatomy and Neurobiology, and Psychology, Programs in Occupational Therapy and Neural SciencesWashington University School of MedicineSt. LouisUSA

Personalised recommendations