Advertisement

Particle Production and Dynamics in the Early Universe

  • J. B. Hartle

Abstract

The big bang is perhaps the most interesting system to which we can hope to apply quantum gravity. Nowhere else do we find a region of spacetime which is causally connected to us with so strong a curvature on so large a scale. Even the most elementary calculations show that quantum processes have an important effect on the dynamics of the early universe. For example, if one uses the test field approximation to calculate the probability of producing a pair of conformally invariant scalar particles in a given homogeneous buit slightly anistropic universe, one finds, following the pioneering work of Zel’dovich and Starobinsky1

Keywords

Effective Action Early Universe Particle Production Weyl Tensor Back Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel’dovich and A.A. Starobinsky, Pis’ma Zh. Eksp. Teor. Fiz. 26, 373 (1977) [JETP Lett. 26, 252 (1977)].ADSGoogle Scholar
  2. 2.
    For some reviews of earlier work see, e. g. L. Parker in Asymptotic Structure of Spacetime, F.P. Espos ito and L. Witten, eds. (Plenum Press, 1977)Google Scholar
  3. V.N. Lukash, I.D. Novikov, A.A. Starobinsky, and Ya. B. Zel’dovich, Nuovo Cimento 35B 293 (1976)ADSGoogle Scholar
  4. B-L. Hu in Recent Developments in Relativity,Proceedings of the Second Marcel Grossmann Meeting, R. Ruffini, ed. (North Holland Publishing Co., 1980) For examples of more recent approaches see Refs 3-10.Google Scholar
  5. 5.
    M.V. Fischetti, J.B. Hartle and B.-L. Hu, Phys. Rev. D 20, 1757 (1979).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J.B. Hartle and B.-L. Hu, Phys. Rev. D 20, 1772 (1979).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J.B. Hartle and B.-L. Hu, Phys. Rev. D 21, 2756 (1980).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.B. Hartle, Phys. Rev. D 22, 2091 (1980. rMathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J.B. Hartle, Phys. Rev. D 23, 2121 (1981).ADSGoogle Scholar
  10. 10.
    A.A. Starobinsky, Phys. Lett. 91B, 99 (1980).ADSGoogle Scholar
  11. 11.
    V.T. Gurovich and A.A. Starobinsky, Zh. Eksp. Teor. Fiz. 77, 1699 (1979) [Sov. Phys. JETP 50, 844 (1979)].Google Scholar
  12. 12.
    B.-L. Hu, Phys. Lett. 103B, 331 71-981).ADSGoogle Scholar
  13. 13.
    G. t’Hooft, in Functional and Probabilistic Methods in Field Theory. Proceedings of the XIIth Winter School of Theoretical Physics in Karpacz ( Wydawnictwa Universytetu Wroclawskrego, Wroclaw 1978 ).Google Scholar
  14. 14.
    B.S. DeWitt, in Quantum Gravity II (Oxford University Press, to be published.Google Scholar
  15. 15.
    D. Boulware, Phys. Rev. D 23, 389 (1981).Google Scholar
  16. 16.
    R. Fukuda and T. Kugo, Phys. Rev. D 13, 3469 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. B. Hartle
    • 1
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations