Asymptotic Freedom in Renormalisable Gravity and Supergravity

  • E. S. Fradkin
  • A. A. Tseytlin


Pure Einstein gravity is known to be non-renormalizable. Though the theory is one-loop finite on shell it probably possesses a divergent S-matrix starting from the two-loop order. The situation is even worse when ordinary matter is added. Quantizing matter fields in the classical metric background we already need bare curvature squared R2-terms in order to absorb the infinities. The possible was of improvement suggest themselves: (i) we may try to arrange all matter fields in a multiplet in order to cancel dangerous divergences. This is the way of supergravity known to be only partially successful at present (only one- and two-loop on shell finiteness was established); (ii) one can add the R2-terms to the Einstein langragian thus obtaining a manifestly renormalizable theory.


Yukawa Coupling Matter Field Renormalization Group Equation Flat Space Asymptotic Freedom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, in: General Relativity, eds. S.W. Hawking and W. Israel (Cambridge U.P. 1979 ).Google Scholar
  2. 2.
    E.S. Fradkin and A.A. Tseytlin, Lebedev Inst. preprint N 70 (1981) Phys. Lett. 104B, 377 (1981); Nuclear Physics B (to appear).MathSciNetADSGoogle Scholar
  3. 3.
    S.L. Adler, in: High Energy Limit, Erice Lectures, 1980, ed. A. Zichichi ( Plenum, 1981 ); Revs. Mod. Phys. (to be published).Google Scholar
  4. 4.
    E. Tomboulis, Phys. Lett. 70B, 361 (1977); 97 B, 77 (1980).ADSGoogle Scholar
  5. 5.
    B. Hasslacher and E. Mottola, Phys. Lett. 99B, 221 (1981).MathSciNetADSGoogle Scholar
  6. 6.
    K. S. Stelle, Phys. Ref. D16, 953 (1977).MathSciNetADSGoogle Scholar
  7. 7.
    S.W. Hawking, D.N. Page and C Pope, Nucl. Phys. B170 [FS1], 283 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    B.S. De Witt, Phys. Rev. Lett 47, 1647 (1981).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    E.S. Fradkin and G.A. Vilkovisky, in: Proc. 18th Int. Conf. on High Energy Phys. (Tbilisi, 1976), v.2C, p.28.Google Scholar
  10. 10.
    E.S. Fradkin and G.A. Vilkovisisky, Phys. Lett. 77B, 262 (1978).ADSGoogle Scholar
  11. 11.
    E.S. Fradkin, Trieste preprint IC/79/67 (1979).Google Scholar
  12. 12.
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Phys. Rev. D17, 3179 (1978)ADSGoogle Scholar
  13. 13.
    S. Ferrara and B. Zumino, Nucl. Phys. B134, 301 (1978).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    E. Bergshoeff, M. De Roo and B. De Wit, Nucl. Phys. B182, 173 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    E.S. Fradkin and A.A. Tseytlin, Lebedev Phys. Inst. N 213 (1981); Phys. Lett: B ( March 1982 ); Nucl. Phys. B (to be published).Google Scholar
  16. 16.
    J. Julve and M. Tonin, Nuov. Cim. 46B, 137 (1978);MathSciNetADSGoogle Scholar
  17. A. Salam and J. Strathdee, Phys. Rev. D18, 448 (1978).Google Scholar
  18. 18.
    B.S. Kay, Phys. Lett. B101, 241 (1981).ADSGoogle Scholar
  19. 19.
    V.P. Frolov and G.A. Vilkovisky, Phys. Lett. B 106, 307 (1981) and this volume.MathSciNetADSGoogle Scholar
  20. 20.
    K.I. Macrae and D. Rigert, Phys. Rev. D24, 2555 (1981).ADSGoogle Scholar
  21. 21.
    A. Zee, Phys. Rev. Lett. 42, 417 (1979); 44, 703 (1080); L. Smolin, Nucl. Phys. B160, 253 (1979).ADSCrossRefGoogle Scholar
  22. L. Smolin, Phys. Lett. 93B, 95 (1980).MathSciNetADSGoogle Scholar
  23. 23.
    M. Kaku and P.K. Townsend, Phys. Lett. 76B, 54 (1978)Google Scholar
  24. J. W. van Holten and A. van Proyen, Nucl. Phys. B184, 77 (1981).ADSGoogle Scholar
  25. 25.
    A. Salam, Trieste preprint IC-81-61 (1981), Proc. Roy. Soc. (to appear).Google Scholar
  26. 26.
    S.M. Christensen, M.J. Duff, G.W. Gibbons and M. Rocek, Phys. Rev. Lett. 45, 161 (1980).ADSCrossRefGoogle Scholar
  27. T.L. Curtright, Phys. Lett. 102 B, 17 (1981).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. S. Fradkin
    • 1
  • A. A. Tseytlin
    • 1
  1. 1.P.N. Lebedev Physical InstituteMoscowUSSR

Personalised recommendations