Geometries Inherent to N = 1 Supergravities

  • A. S. Galperin
  • V. I. Ogievetsky
  • E. S. Sokatchev


At present it is becoming clear that the number N of gravitinos does not specify the kind of extended supergravity completely. Even in the simplest case, N = 1, we are aware of, at least, three supergravities. Two N = 2 versions are already known. For higher N one may expect even greater diversity. The versions differ by the content of auxiliary fields. Correspondingly, differences occur in the interactions with matter fields, in the mechanism of spontaneous symmetry breaking (when auxiliary fields get nonzero vacuum expectations); also, in some versions important additional local symmetries appear, etc. In view of all that it seems instructive to study the simplest case, N = 1, in detail. In the first part of the present talk we shall discuss N = 1 supergravity in the linearized limit, the structure of currents — sources in it and the free equations of motion. These quite elementary arguments are very useful in a preliminary sort out of the various possible sets of auxiliary fields.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sohnius M., West P.C. Prepr., 1981, ICTP 80–81/37.Google Scholar
  2. 2.
    Akulov V.P., Volkov D.V., Soroka V.A. Theor. Math. Phys., 1977, 31, p. 12.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ogievetsky V., Sokatchev E. Phys. Lett., 1978, B79, p. 222.ADSGoogle Scholar
  4. 4.
    Ogievetsky V., Sokatchev E. Yadernaya Phys., 1980, 31, p.205; 31, p.821.Google Scholar
  5. 5.
    Siegel W., Gates S.1. Nucl. Phys., 1979, B147, p. 77.ADSCrossRefGoogle Scholar
  6. 6a.
    Sokatchev E. In: “Superspace and Supergravity”, eds. W.Hawking and M. Rocek, Cambridge Univ. Press (1981), p. 197Google Scholar
  7. 6b.
    Sokatchev E. Phys. Letters, 1981, 100 B, p. 466.ADSGoogle Scholar
  8. 7.
    Howe P.S., Stelle K.S., Townsend P.K. CERN prepr., 1981, TH.3179.Google Scholar
  9. 8.
    Bedding S., Lang W. Max-Planck prepr., 1981, MPI-PAE/PTh 42/81.Google Scholar
  10. 9.
    Ogievetsky V., Polubarinov I. Ann. Phys., 1965, 35, p. 167.ADSCrossRefGoogle Scholar
  11. 10.
    Zumino B. Nucl. Phys., 1975, B89, p. 535.ADSCrossRefGoogle Scholar
  12. 11.
    Ferrara S., Zumino B. Nucl. Phys., 1975, B87, p. 207.ADSCrossRefGoogle Scholar
  13. 12.
    Ogievetsky V., Sokatchev E. Nucl. Phys., 1977, B124, p. 309.ADSCrossRefGoogle Scholar
  14. 13.
    Salam A., Strathdee J. Nucl. Phys., 1974, B80, p. 499.MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    Sokatchev E. Nucl. Phy., 1975, B99. p. 96.MathSciNetADSCrossRefGoogle Scholar
  16. 15.
    Kaku M., Townsend P.K., van Nieuwenhuizen P. Phys. Rev., 1978, D17, p. 3179.ADSGoogle Scholar
  17. 16.
    Ogievetsky V., Sokatchev E. Yadernaya Phys., 1978, 28, p. 825.Google Scholar
  18. 17.
    Lang W. Nucl. Phys., 1981, B179, p. 106.ADSCrossRefGoogle Scholar
  19. 18.
    Ogievetsky V., Polubarinov I. Soviet Journal of Nuclear Phys.,4, p.156.Google Scholar
  20. 19.
    Siegel W., Gates S.J. Prepr. 1981, CALT-68–844.Google Scholar
  21. 20.
    de Wit B., Rocek M. Prepr. 1981, NIKHEF - H/81–28.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. S. Galperin
  • V. I. Ogievetsky
  • E. S. Sokatchev

There are no affiliations available

Personalised recommendations