A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems

  • A. D. Linde


A new inflationary universe scenario is suggested, which is free from the shortcomings of such a previously suggested scenario. The new scenario provides a possible solution of the horizon, flatness, homogeneity and isotropy problems in cosmology, and also a solution of the primordial monopole problem in grand unified theories.


Phase Transition Grand Unify Theory Baryon Asymmetry Observable Part Exponential Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.A. Kirzhnits, JETP Lett. 15(1972) 529.ADSGoogle Scholar
  2. D.A. Kirzhnits and A.D. Linde, Phys. Lett. 42B(1972) 471.ADSGoogle Scholar
  3. S. Weinberg, Phys. Rev. D9(1974) 3357.ADSGoogle Scholar
  4. L. Dolan and R. Jackiw, Phys. Rev. D9(1974) 3320.ADSGoogle Scholar
  5. D.A. Kirzhnits and A.D. Linde, ZhETF 67(1974) 1263 (JETP 40(1975) 628 ).ADSGoogle Scholar
  6. 2.
    D.A. Kirzhnits and A.D. Linde, Ann. Phys. (N.Y.) 101(1976) 195.ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Linde, Rep. Progr. Phys. 42(1979) 389.ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Linde, in: “Statistical mechanics of quarks and hadrons”, ed. by H. Sats (North-Holland Publ. Comp.,1981); p. 385.Google Scholar
  9. A.D. Linde, Phys. Lett. 99B (1981) 391.ADSGoogle Scholar
  10. 10.
    M. Danial, Phys. Lett. 99B(1981) 371.ADSGoogle Scholar
  11. 11.
    A.D. Linde, Phys. Lett. 70B(1977) 306; 100B(1981) 37.ADSGoogle Scholar
  12. 12.
    K. Sato, Mon. Not. R. Astr. Soc. 195 (1981)467.ADSGoogle Scholar
  13. 13.
    A.H. Guth and E. Weinberg, Phys. Rev. D23(1981) 876.ADSGoogle Scholar
  14. 14.
    R. Tolman, “Relativity, thermodynamics and cosmology”, (Oxford at the Clarendon Press, 1969 ).Google Scholar
  15. 15.
    Ya. B. Zeldovich and I.D. Novikov, “Structure and evolution of the universe”, Moscow, Nauka, 1975.Google Scholar
  16. 16.
    A.A. Starobinsky, Phys. Lett. 91B(1980) 100.ADSGoogle Scholar
  17. Ya. B. Zeldovich, Pisma. Astron. Zh. 7(1981) 579.Google Scholar
  18. 18.
    A.H. Guth, Phys. Rev. D23(1981) 347.ADSGoogle Scholar
  19. 19.
    Ya. B. Zeldovich and M. Yu. Khlopov, Phys. Lett. 79B(1978) 239.Google Scholar
  20. J.P. Preskill, Phys. Rev. Lett. 43(1979) 21365.ADSCrossRefGoogle Scholar
  21. 21.
    G.P. Cook and K.T. Mahanthappa, Phys. Rev. D23(1981) 1321.ADSGoogle Scholar
  22. 22.
    A. Billoire and K. Tamvakis, CERN preprint TH.3019 (1981); K. Tamvakis and G.E. Vayonakis, CERN preprints TH.3108 and TH. 3128 (1981).Google Scholar
  23. 23.
    Q. Shafi, CERN preprint TH. 3143 (1981).Google Scholar
  24. 24.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32(1974) 389.CrossRefGoogle Scholar
  25. 25.
    S. Coleman and E. Weinberg, Phys. Rev. D7(1973) 1888.ADSGoogle Scholar
  26. 26.
    V.G. Lapchinsky, V.A. Rubakov and A.V. Veryaskin, I. YaI Preprint (1981).Google Scholar
  27. 27.
    M. Sher, Phys. Rev. D24(1981) 1847.ADSGoogle Scholar
  28. 28.
    L.F. Abbott, Nucl. Phys. B185(1981) 233.Google Scholar
  29. P. Hut and P.R. Klinkhamer, Phys. Lett. 104B(1981) 439.ADSGoogle Scholar
  30. 30.
    E. Brezin and G. Parisi, J. Stat. Phys. 19(1978) 269.MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    A.D. Linde, Decay of the false vacuum at finite temperature, Lebedev Phys. Inst. preprint (1981).Google Scholar
  32. 32.
    Ya. B. Zeldovich, Mon. Not. R. Astr. Soc. 192(1980) 663.ADSGoogle Scholar
  33. A. Vilenkin, Phys. Rev. Lett. 46(1981) 1169; Tufts Univ. preprint (1981).ADSCrossRefGoogle Scholar
  34. 34.
    G.V. Chibisov and V.F. Mukhanov, Lebedev Phys. Inst. preprint No. 198 (1981): Mon. Not. R. Astr. Soc., to be published.Google Scholar
  35. D.A. Kompaneets, V.N. Lukash and I.D. Novikov, Space Research Inst. preprint No. 652 (1981).Google Scholar
  36. 36.
    S. Dimopoulos, S. Raby and F. Wilczek, Stanford Univ. preprint NSF-ITP-81-31 (1981); S. Dimopoulos and H. Georgi, Harvard Univ. preprint NUTP-81/AO22 (1981).Google Scholar
  37. 37.
    Ya. B. Zeldovich, I. Yu. Kobzarev and L.B. Okun, JETP 40(1975) 1.ADSGoogle Scholar
  38. 38.
    A.D. Sakharov, Pisma ZhETF 5(1967) 32.Google Scholar
  39. M. Yoshimura, Phys. Rev. Lett. 41(1978) 281.ADSCrossRefGoogle Scholar
  40. S. Dimopoulos and L. Susskind, Phys. Rev. D18(1978) 4500.ADSGoogle Scholar
  41. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Phys. Lett. 80B(1979) 360.ADSGoogle Scholar
  42. S. Weinberg, Phys. Rev. Lett. 42(1979) 859.ADSCrossRefGoogle Scholar
  43. 43.
    C.B. Collins and S.W. Hawking, Astrophys. J. 180(1973) 317.MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    S.W. Hawking, I.G. Moss and J.M. Stewart, D.A.M.T.P., preprint (1981).Google Scholar
  45. 45.
    J.D. Barrow and M.S. Turner, Nature 292(1981) 35.ADSCrossRefGoogle Scholar
  46. 46.
    Ya. B. Zeldovich, Pisma. ZhETF 12(1970) 443.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. D. Linde
    • 1
  1. 1.Lebedev Physical InstituteMoscowUSSR

Personalised recommendations