Skip to main content

Transient Luminescence, Transport and Photoconductivity in Chalcogenide Glasses

  • Chapter

Part of the book series: NATO ASI Series ((ASIB,volume 127))

Abstract

The chalcogenide glasses are perhaps the most thoroughly studied amorphous semiconductor systems. In the past two decades their measured properties have been repeatedly compared with model predictions and served as guides in the search for fundamental concepts and principles necessary for amorphous semiconductors. An example is the synthesis of the Mott-CFO model which is a low carrier density and high carrier mobility picture that involves the concepts of band tail states and mobility edge. On the other hand, Emin proposed that the charged carriers in chalcogenide glasses form small polarons and necessarily implies low carrier mobility because of small band width caused by atomic displacements associated with self-trapping. The small-polaron model can explain, in addition, the Hall effect sign anomaly and the difference in activation between the Peltier heat and conductivity. In spite of the fact that the Mott-CFO model and the small-polaron model are orthogonal to each other, the experimental data prior to 1978 have not been able to discriminate which is the correct model. In this work, transient optical and transport data which have rapidly accumulated since 1979 are considered. These recent data enable us to narrow down the possible states that can exist in chalcogenide glasses. As a result of this analysis, a minimal set of states has been proposed that can explain the totality of optical and transport data. It confirms that transport occurs by small polaron hopping. The proposed minimum set of states is consistent with Anderson’s bipolaronic ground state. The transient transport data, transient optical data, the dynamical dielectric relaxation data, and the volume and enthalpy recovery data of chalcogenide glasses are shown to conform to a universal pattern predicted by a recent unified model of relaxation at low frequencies/long times of condensed matter in general.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. F. Mott and E. A. Davis, Electronic Processes in Non–crystalline Materials, Second Edition (Clarendon, Press, Oxford, England, 1979 ).

    Google Scholar 

  2. D. Emin, Adv. Phys. 24, 305 (1975).

    Article  ADS  Google Scholar 

  3. D. Emin, J. Non–cryst. Solids 35 & 36, 969 (1980).

    Article  ADS  Google Scholar 

  4. D. Emin, J. Non–cryst. Solids 35 & 36, 969 (1980).

    Article  ADS  Google Scholar 

  5. D. Emin, Amorphous and Liquid Semiconductors, ed. W. E. Spear (Edinburgh), p. 249 and p. 261 (1977).

    Google Scholar 

  6. D. Emin, Phys. Rev. Lett. 32, 303 (1974).

    Article  ADS  Google Scholar 

  7. D. Emin, C. H. Seager and R. K. Quinn, Phys. Rev. Lett. 28, 813 (1972).

    Article  ADS  Google Scholar 

  8. D. Emin, Physics Today, June issue, p. 34 (1982).

    Google Scholar 

  9. M. A. Bösch, R. W. Epworth and D. Emin, J. Non–cryst. Solids 40, 587 (1980).

    Article  Google Scholar 

  10. D. Emin, J. de Physique, Colloque C4, 535 (1981).

    Google Scholar 

  11. E. I. Rashba, Optika i Spectrosk. 2, 75 and 88 (1957); Y. Toyozawa, Progr. Theor. Phys. 26, 29 (1961); A. Sumi, J. Phys. Soc. Jap. 43, 1286 (1977).

    Google Scholar 

  12. E. I. Rashba, Optika i Spectrosk. 2, 75 and 88 (1957); Y. Toyozawa, Progr. Theor. Phys. 26, 29 (1961); A. Sumi, J. Phys. Soc. Jap. 43, 1286 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E. I. Rashba, Optika i Spectrosk. 2, 75 and 88 (1957); Y. Toyozawa, Progr. Theor. Phys. 26, 29 (1961); A. Sumi, J. Phys. Soc. Jap. 43, 1286 (1977).

    Article  ADS  Google Scholar 

  14. P. W. Anderson, Phys. Rev. Lett. 34, 953 ( 1975 ); J. de Physique, Colloque (1976).

    Article  ADS  Google Scholar 

  15. P. W. Anderson, Phys. Rev. Lett. 34, 953 ( 1975 ); J. de Physique, Colloque (1976).

    Google Scholar 

  16. S. G. Bishop, U. Strom and P. C. Taylor, Phys. Rev. Lett. 34, 346 (1975).

    ADS  Google Scholar 

  17. R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975).

    Article  ADS  Google Scholar 

  18. M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37 1504 (1976).

    Article  ADS  Google Scholar 

  19. B. T. Kolomiets, T. N. Mamontova and A. A. Babaev, J. Non–cryst. Solids 4, 289 (1970).

    Article  ADS  Google Scholar 

  20. R. A. Street, T. M. Searle and I. G. Austin, Amorphous and Liquid Semiconductors, ed. J. Stuke and W. Brenig ( Taylor and Francis ltd., London, 1974 ), p. 953.

    Google Scholar 

  21. K. Murayama, T. Ninomiya, H. Suzuki and K. Morigaki, Solid State Commun. 24, 197 (1977).

    Article  ADS  Google Scholar 

  22. M. Bösch and J. Shah, Phys. Rev. Lett. 42, 118 (1979).

    Article  ADS  Google Scholar 

  23. G. S. Higashi and M. Kastner, J. Non–Cryst. Solids 35–36, 921 (1980).

    Article  Google Scholar 

  24. J. Shah, Phys. Rev. B 21, 4751 (1980).

    Article  ADS  Google Scholar 

  25. R. A. Street, Solid State Commun. 34, 157 (1980).

    Article  ADS  Google Scholar 

  26. K. Murayama, H. Suzuki and T. Ninomiya, J. Non–cryst. Solids 35–36, 915 (1980).

    Article  Google Scholar 

  27. K. Murayama, K. Kimura and T. Ninomiya, Solid State Commun. 36, 349 (1980).

    Article  ADS  Google Scholar 

  28. K. Murayama and M. A. Bösch, J. de Physique C4, 343 (1981).

    Google Scholar 

  29. G. Pfister and H. Scher, Adv. Phys. 27, 747 (1978).

    Article  ADS  Google Scholar 

  30. G. Pfister, A. R. Melnyk and M. E. Scharfe, Solid State Commun. 21, 907 (1977).

    Article  ADS  Google Scholar 

  31. G. Pfister, M. Morgan and K. S. Liang, Solid STate Commun. 30i, 227 (1979).

    Article  ADS  Google Scholar 

  32. G. Pfister and M. Morgan, Phil. Mag. B 41, 209 (1980).

    Article  Google Scholar 

  33. S. G. Bishop and P. C. Taylor, Phil. Mag. B 40, 483 (1979).

    Article  Google Scholar 

  34. J. Tauc, F. J. DiSalvo, G. E. Peterson, and D. L. Wood, Amorphous Magnetism, ed. H. O. Hooper and A. M. de Graaf (Plenum Press, NY, 1973 ), p. 119.

    Chapter  Google Scholar 

  35. M. Abkowitz, J. Appl. Phys. 51, 1539 (1980).

    Article  ADS  Google Scholar 

  36. C. T. Moynihan et al., Annals N.Y. Acad. Sci. 279, 15 (1976).

    Article  ADS  Google Scholar 

  37. K. L. Ngai, Comments Solid State Phys. 9, 127 (1979); 9, 141 (1980).

    Google Scholar 

  38. K. L. Ngai, Comments Solid State Phys. 9, 127 (1979); 9, 141 (1980).

    Google Scholar 

  39. K. L. Ngai, Recent Developments in Condensed Matter Physics, Vol. I,Invited Papers, ed. J. T. Devreese ( Plenum, NY, 1981 ), p. 527.

    Google Scholar 

  40. K. L. Ngai and F. S. Liu, Phys. Rev. B 24, 1049 (1981).

    Article  ADS  Google Scholar 

  41. K. L. Ngai, X. Huang and F. S. Liu, in Physics of MOS Insulators, ed. G. Lucovsky ( Pergamon, NY, 1980 ), p. 44.

    Google Scholar 

  42. K. L. Ngai, in Tetrahedrally Bonded Amorphous Semiconductors, AIP Conf. Proceedings No. 73, (1981), p. 293.

    Google Scholar 

  43. K. L. Ngai, Solid State Ionics 5, 27 (1981).

    Article  Google Scholar 

  44. K. L. Ngai, Polymer Preprints 22, 287 (1981).

    MathSciNet  Google Scholar 

  45. J. T. Bendler and K. L. Ngai, Polymer Preprints 22 (No. 2), 287 (1981).

    Google Scholar 

  46. S. Teitler, A. K. Rajagopal and K. L. Ngai, NRL Memo Report No. 4757 (1982), and Phys. Rev. A, November issue (1982).

    Google Scholar 

  47. K. L. Ngai and R. W. Rendell, Polymer Preprints 23, Sept 1982.

    Google Scholar 

  48. S. G. Bishop and D. L. Mitchell, Phys. Rev. B 8, 5696 (1973).

    Article  ADS  Google Scholar 

  49. S. Abe and Y. Toyozawa, J. Phys. Soc. Japan 50, 2185 (1981).

    Article  ADS  Google Scholar 

  50. G. Higashi and M. Kastner, Phys. Rev. B 24, 2275 (1981).

    Article  ADS  Google Scholar 

  51. K. Murayama and T. Ninomiya, Jap. J. Appl. Physics (to be published). The results of these authors can be seen from Fig. 1 in these lecture notes.

    Google Scholar 

  52. G. Higashi and M. Kastner, Preprint (1982). Figs. 2–4 reproduce their data.

    Google Scholar 

  53. N. F. Mott, Phil. Mag. B 34, 1101 (1976).

    Article  Google Scholar 

  54. M. Kastner, Phil. Mag. B 37, 127 (1978).

    Article  Google Scholar 

  55. J. C. Phillips, J. Non–cryst. Solids 43, 37 (1981).

    Article  ADS  Google Scholar 

  56. W. E. Spear, Proc. Phys. Soc. (London) B70, 669 (1957); B76, 826 (1960); J. L. Hartke, Phys. Rev. 125, 1177 (1962); H. P. Grunwald and R. M. Blakney, Phys. Rev. 165, 1006 (1968).

    ADS  Google Scholar 

  57. W. E. Spear, Proc. Phys. Soc. (London) B70, 669 (1957); B76, 826 (1960); J. L. Hartke, Phys. Rev. 125, 1177 (1962); H. P. Grunwald and R. M. Blakney, Phys. Rev. 165, 1006 (1968).

    Article  ADS  Google Scholar 

  58. W. E. Spear, Proc. Phys. Soc. (London) B70, 669 (1957); B76, 826 (1960); J. L. Hartke, Phys. Rev. 125, 1177 (1962); H. P. Grunwald and R. M. Blakney, Phys. Rev. 165, 1006 (1968).

    Article  ADS  Google Scholar 

  59. W. E. Spear, Proc. Phys. Soc. (London) B70, 669 (1957); B76, 826 (1960); J. L. Hartke, Phys. Rev. 125, 1177 (1962); H. P. Grunwald and R. M. Blakney, Phys. Rev. 165, 1006 (1968).

    Article  ADS  Google Scholar 

  60. M. D. Tabak, Phys. Rev. B2, 2104 (1970).

    Article  ADS  Google Scholar 

  61. B. T. Kolomiets and E. A. Lebedev, Sov. Phys. Semicond. 1, 244 (1967); J. M. Marshall and A. E. Owen, Phil. Mag. 24, 1281 (1971).

    Google Scholar 

  62. B. T. Kolomiets and E. A. Lebedev, Sov. Phys. Semicond. 1, 244 (1967); J. M. Marshall and A. E. Owen, Phil. Mag. 24, 1281 (1971).

    Article  ADS  Google Scholar 

  63. M. E. Scharfe, Phys. Rev. B2, 5015 (1970); D. M. Pai and M. E. Scharfe, J. Non–Cryst. Solids 8–10, 752 (1972).

    ADS  Google Scholar 

  64. M. E. Scharfe, Phys. Rev. B2, 5015 (1970); D. M. Pai and M. E. Scharfe, J. Non–Cryst. Solids 8–10, 752 (1972).

    Article  Google Scholar 

  65. H. Scher and E. W. Montroll, Phys. Rev. B12, 2455 (1975).

    ADS  Google Scholar 

  66. G. Pfister and H. Scher, Phys. Rev. B15, 2063 (1977).

    Google Scholar 

  67. F. W. Schmidlin, Phys. Rev. B16, 2362 (1977).

    ADS  Google Scholar 

  68. J. Noolandi, Phys. Rev. B16, 4466 and 4474 (1977).

    ADS  Google Scholar 

  69. G. Pfister, K. Liang, M. Morgan, P. C. Taylor, E. J. Friebele and S. G. Bishop, Phys. Rev. Lett. 41, 1318 (1978).

    Article  ADS  Google Scholar 

  70. F. B. McLean, H. E. Boesch and J. M. McGarrity, IEEE Trans. Nuc. Sci. NS–23, 1506 (1976); and private communication from F. B. McLean.

    Article  ADS  Google Scholar 

  71. R. C. Hughes, Phys. Rev. B 15, 2012 (1977).

    Article  ADS  Google Scholar 

  72. R. C. Hughes and D. Emin, Proc. Int’l Conf. Physics of SiO 2 and its Interfaces, ed. S. Pantelides ( Pergamon, NY, 1978 ), p. 14.

    Google Scholar 

  73. H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).

    Article  ADS  Google Scholar 

  74. G. Lucovsky, Phil. Mag. B 39, 531 (1979).

    Article  Google Scholar 

  75. P. C. Taylor and K. L. Ngai, Solid State Commun. 40, 525 (1981).

    Article  ADS  Google Scholar 

  76. C. H. Seager and R. K. Quinn, J. Non–cryst. Solids 17, 386 (1975).

    Article  ADS  Google Scholar 

  77. M. Abkowitz, Phys. Rev. 22, 3843 (1980).

    Article  ADS  Google Scholar 

  78. J. Orenstein and M. Kastner, Phys. Rev. Lett. 46, 1421 (1981); for earlier work on the same subject by the same authors see Phys. Rev. Lett. 43, 161 (1979); J. Noncryst. Solids 35/36, 951 (1980).

    Article  ADS  Google Scholar 

  79. J. Orenstein and M. Kastner, Phys. Rev. Lett. 46, 1421 (1981); for earlier work on the same subject by the same authors see Phys. Rev. Lett. 43, 161 (1979); J. Noncryst. Solids 35/36, 951 (1980).

    Article  ADS  Google Scholar 

  80. J. Orenstein and M. Kastner, Phys. Rev. Lett. 46, 1421 (1981); for earlier work on the same subject by the same authors see Phys. Rev. Lett. 43, 161 (1979); J. Noncryst. Solids 35/36, 951 (1980).

    Article  Google Scholar 

  81. F. W. Schmidlin, Phys. Rev. B 16, 2362 (1977).

    Article  ADS  Google Scholar 

  82. J. Noolandi, Phys. Rev. B 16, 4466 (1977).

    Article  ADS  Google Scholar 

  83. D. Monroe, M. Kastner and J. Orenstein, J. de Physique, C4, 559 (1981).

    Google Scholar 

  84. M. Bösch, Phys. Rev. Lett. 48, 1228 (1982); 48, 649 (1982).

    Article  ADS  Google Scholar 

  85. M. Bösch, Phys. Rev. Lett. 48, 1228 (1982); 48, 649 (1982).

    Article  ADS  Google Scholar 

  86. C. T. Moynihan, Annals N.Y. Acad. Sci. 279, 15 (1976).

    Article  ADS  Google Scholar 

  87. K. L. Ngai, “Evidences for Universal Behavior of Condensed Matter at Low Frequencies/Long Times,” Proceedings of “Discussion Meeting on Non–Debye Relaxation in Condensed Matter,” held at Indian Institute of Science, Bangalore, India, Sept. 1982, ed. T. V. Ramakrishnan (Special Publication of the Indian Academy of Sciences).

    Google Scholar 

  88. N. F. Mott, J. Non–Cryst. Solids 35/36, 1321 (1980).

    Article  ADS  Google Scholar 

  89. M. A. Paalanen, T. F. Rosenbaum, G. A. Thomas and R. N. Bhatt, Phys. Rev. Lett. 48, 1284 (1982).

    Article  ADS  Google Scholar 

  90. D. Vanderbilt and J. D. Joannopoulos, Phys. Rev. Lett. 49, 823 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Ngai, K.L. (1984). Transient Luminescence, Transport and Photoconductivity in Chalcogenide Glasses. In: Devreese, J.T., Peeters, F. (eds) Polarons and Excitons in Polar Semiconductors and Ionic Crystals. NATO ASI Series, vol 127. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2693-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2693-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9674-4

  • Online ISBN: 978-1-4613-2693-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics