Advertisement

Membranes

Structure and Function
  • Alessandra Gliozzi
  • Ranieri Rolandi

Abstract

The membrane surrounding the living cell is not only a passive barrier separating the interior of the cell from its environment, it must also make possible the selective interaction of these two regions, between which substances and information are continually exchanged. To better understand the dynamics of these processes, it seems useful to give a description of chemical composition, architecture, and topography of the plasma membrane.

Keywords

Lipid Bilayer Lipid Bilayer Membrane Planar Lipid Bilayer Purple Membrane Excitable Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimers, W., 1978, Gating currents and charge movements in excitable membranes, Rev. Physiol. Biochem. Pharmacol. 82: 96 – 190.Google Scholar
  2. Alvarez, O., Diaz, E., and Latorre, R., 1975, Voltage-dependent conductance induced by hem- ocyanin in black lipid films, Biochim. Biophys. Acta 389: 444 – 448.PubMedGoogle Scholar
  3. Anderson, C. R., and Stevens, C. F. 1973, Voltage clamp analysis of acetylcholine produced end- plate current fluctuations at the frog neuromuscular junction, J. Physiol. (Lond.) 235:655– 691.Google Scholar
  4. Armstrong, C. M., 1974, Ionic pores, gates and gating currents, Q. Rev. Biophys.7 (2): 179 – 210.PubMedGoogle Scholar
  5. Armstrong, C. M., and Bezanilla, F., 1973, Currents related to the gating particles of the sodium channels, Nature (Lond.) 242: 459 – 461.Google Scholar
  6. Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of Na channels, J. Gen. Physiol. 63: 533 – 552.PubMedGoogle Scholar
  7. Bamberg, E., Apell, H. J., Dencher, N. A., Spelling, W., Stieve, H., Lauger, P., 1979, Photo- currents generated by bacteriorhodopsin in planar bilayer membranes, Biophys. Struct. Mech. 5: 277 – 292.Google Scholar
  8. Baumann, G., and Mueller, P., 1974, A molecular model of membrane excitability, J. Supramol. Struct. 2: 538 – 557.PubMedGoogle Scholar
  9. Baylor, D. A., and Fuortes, M. G. F., 1970, Electrical responses of single cones in the retina of the turtle, J. Physiol. (Lond.) 207: 77 – 92.Google Scholar
  10. Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes, J. Gen. Physiol. 53: 741 – 757.PubMedGoogle Scholar
  11. Begenisich, T., and Stevens, C. F., 1975, How many conductance states do potassium channels have? Biophys. J. 15: 843 – 846.PubMedGoogle Scholar
  12. Benz, R., and Läuger, P., 1976, Kinetic analysis of carrier-mediated ion transport by the charge- pulse technique, J. Membrane Biol. 27: 171 – 191.Google Scholar
  13. Benz, R., Fröhlich, O., Läuger, P., and Montal, M., 1975, Electrical capacity of black lipid films and of lipid bilayers made from monolayers, Biochim. Biophys. Acta 394: 323 – 334.PubMedGoogle Scholar
  14. Benz, R., Fröhlich, O., and Läuger, P., 1977, Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers, Biochim. Biophys. Acta 464:465– 481.PubMedGoogle Scholar
  15. Berns, D. S., 1976, Photosensitive bilayer membranes as model systems for photobiological processes, Photochem. Photobiol. 24: 117 – 139.PubMedGoogle Scholar
  16. Bernstein, J., 1902, Untersuchungen zur thermodynamik der bioelektrischen Strftme, Arch. Ges. Physiol. 92: 521 – 62.Google Scholar
  17. Bezanilla, F., and Armstrong, C. M., 1972, Negative conductance caused by the entry of sodium and cesium ions into the potassium channel of squid axon, J. Gen. Physiol. 60: 588 – 608.PubMedGoogle Scholar
  18. Blok, M. C., and Van Dam, D., 1979, Association of bacteriorhodopsin with lipid-impregnated filters, Biochim. Biophys. Acta 550: 527 – 542.PubMedGoogle Scholar
  19. Boguslavsky, L. I., Boystsov, V. G., Volkov, A. G., Kozlov, I. A., Metelsky, S. T., 1976, Light- dependent translocation of H+ from water to octane by bacteriorhodopsin, Bioorg. Khimi 2: 1125 – 1130.Google Scholar
  20. Boheim, G., 1974, Statistical analysis of alamethicin channels in black lipid membranes, J. Membr. Biol. 19: 277 – 303.PubMedGoogle Scholar
  21. Bullock, J. O., and Schauf, C. L., 1978, Combined voltage-clamp and dialysis of Myxicolaaxons: behaviour of membrane asymmetry currents, J. Physiol. (Lond.) 278: 309 – 324.Google Scholar
  22. Bu’Lock, J. D., De Rosa, M., and Gambacorta, A., 1982, Isoprenoid biosynthesis in archaebac- teria, in: Polyisoprenoid Biosynthesis( J. N. Porte, ed.), pp. 159 – 189 Wiley, London.Google Scholar
  23. Carbone, E., Wanke, E., Prestipino, G., Possani, L., and Maelicke, A., 1982, Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin, Nature (Lond.) 296: 90 – 91.Google Scholar
  24. Changeux, J. P., Thiery, J., Tung, Y., and Kittel, X., 1967, On the cooperativity of biological membranes, Proc. Natl. Acad. Sci. USA. 57: 335 – 341.PubMedGoogle Scholar
  25. Chen, C. H., and Berns, D. S., 1976, Photosensitivity of artificial bilayer membranes: lipid— chlorophyll interaction, Photochem. Photobiol. 24: 255 – 260.Google Scholar
  26. Ciani, S., Eisenman, G., Laprade, R., and Szabo, G., 1973, Theoretical analysis of carrier- mediated electrical properties of bilayer membrane, in: Membranes—A Series of AdvancesVol. 2 ( G. Eisenman, ed.), p. 61, Marcel Dekker, New York.Google Scholar
  27. Ciani, S., Gambale, F., Gliozzi, A., and Rolandi, R., 1975, Effects of unstirred layers on the steady state zero-current conductance of bilayer membranes mediated by neutral carriers of ions, J. Membr. Biol. 24: 1 – 34.PubMedGoogle Scholar
  28. Cone, R. A., 1973, The internal transmitter model for visual excitation: some quantitative implications, in: Biochemistry and Physiology of Visual Pigments( H. Lauger, ed.), pp. 275 – 284, Springer-Verlag, New York.Google Scholar
  29. Conti, F., 1984, Noise analysis and single channel recordings, in: Current Topics in Membrane and Transport, Vol. 22: The Squid Axon( P. F. Baker, ed.), pp. 371 – 405, Academic-Press, New York.Google Scholar
  30. Conti, F., and Neher, E., 1980, Single channels recording of K+ currents in squid axons, Nature (Lond.) 255: 140 – 143.Google Scholar
  31. Conti, F., and Wanke, E., 1975, Channel noise in nerve membranes and lipid bilayers, Q. Rev. Biophys. 8: 451 – 506.PubMedGoogle Scholar
  32. Conti, F., DeFelice, L. J., and Wanke, E., 1975, Potassium and sodium ion current noise in the membrane of the squid giant axon, J. Physiol. (Lond.) 248: 45 – 82.Google Scholar
  33. Conti, F., Neumcke, B., Nonner, W., and Stampfli, R., 1980, Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres, J. Physiol. (Lond.) 308: 217 – 238.Google Scholar
  34. Danielli, J. F., 1975, The bilayer hypothesis of membrane structure, in: Cell Membranes( G. Weissmann and R. Claiborne, eds.), pp. 3 – 11, HP Publishing, New York.Google Scholar
  35. Danielli, J. F., and Davson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell Comp. Physiol. 7(3): 495.Google Scholar
  36. Darszon, A., Montal, M., and Zarco, J., 1977, Light increases the ion and non-electrolyte permeability of rhodopsin-phospholipid vesicles, Biochem. Biophys. Res. Commun. 76: 820 – 827.PubMedGoogle Scholar
  37. De Rosa, M., Gambacorta, A., Nicolaus, B., and Bu’Lock, J. D., 1980, Complex lipids of Cal- dariella acidophila, a thermoacidophile archaebacterium, Phytochemistry 19: 821 – 825.Google Scholar
  38. Drachev, L. A., Kaulen, A. D., Skulachev, V. P., and Voytsitsky, V. M., 1982, Bacteriorhodop- sin-mediated photoelectric responses in lipid/water systems, J. Membr. Biol.65: 1 – 12.Google Scholar
  39. Ehrenstein, G., and Lecar, H., 1977, Electrically gated ionic channels in lipid bilayers, Q. Rev. Biophys. 10(1): 1 –34.Google Scholar
  40. Ehrenstein, G., Lecar, H., and Nossal, R., 1970, The nature of the negative resistance in bimo- lecular lipid membranes containing excitability-inducing material, J. Gen. Physiol. 55:119– 133.Google Scholar
  41. Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Membr. Biol. 14: 143 – 176.PubMedGoogle Scholar
  42. Eyring, H., 1935, The activated complex in chemical reactions, J. Chem. Phys. 3: 107.Google Scholar
  43. Eyring, H., Lumry, R., and Woodbury, J. W., 1949, Some applications of modern rate theory to physiological systems, Record. Chem. Progr. 10: 100.Google Scholar
  44. Fatt, P., and Katz, B., 1952, Spontaneous subthershold activity at motor nerve endings, J. Physiol. (Lond.) 117: 107 – 128.Google Scholar
  45. Finkelstein, A., and Mauro, A., 1974, Physical principles and formalisms of electrical excitability, in: Handbook of Physiology: The Nervous System. I. ( E. R. Kandel, ed.), pp. 161 – 214, American Physiological Society, Bethesda, Md.Google Scholar
  46. Fishman, H. M., 1972, Excess noise from small patches of squid axon membrane, Biophys. Soc. Annu. Meet. Abstr. 12p, 119a.Google Scholar
  47. Fishman, H. M., Moore, L. E., and Poussart, D. J. M., 1975, Potassium-ion conduction noise in squid axon membrane, J. Membr. Biol. 24: 305 – 328.PubMedGoogle Scholar
  48. Foster, M., and McLaughlin, S., 1974, Complexes between uncouplers of oxidative phosphorylation, J. Membr. Biol. 17: 155 – 180.PubMedGoogle Scholar
  49. Frehland, E., 1980, Current fluctuations in discrete transport systems far from equilibrium. Breakdown of the fluctuation dissipation theorem, Biophys. Chem. 12: 63 – 71.PubMedGoogle Scholar
  50. Frye, C. D., and Edidin, M., 1970, The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7: 319.PubMedGoogle Scholar
  51. Gambale, F., Gliozzi, A., and Robello, M., 1973, Determination of rate constants in carrier- mediated diffusion through lipid bilayers, Biochim. Biophys. Acta 330: 325 – 334.PubMedGoogle Scholar
  52. Gambale, F., Gliozzi, A., Pepe, M., Robello, M., and Rolandi, R., 1980, Photopigment inducing pores in lipid bilayer membranes, in: Developments in Biophysical Research( A. Borsellino, P. Omodeo, R. Strom, A. Vecli, and E. Wanke, eds.), pp. 93 – 107, Plenum Press, New York.Google Scholar
  53. Gilly, W. F., and Armstrong, C. M., 1980, Gating current and potassium channels in the giant axon of the squid, Biophys. J. 29: 485 – 492.PubMedGoogle Scholar
  54. Gliozzi, A., 1980a, The lipid bilayer: a model system for biological membranes, in: Bioenergetics and Thermodynamics: Model Systems( A. Braibanti, ed.), pp. 377 – 390, D. Reidel Publishing Co., Dordrecht, Holland.Google Scholar
  55. Gliozzi, A., 1980b, Carriers and channels in artificial and biological membranes, in: Bioenergetics and Thermodynamics: Model systems (A. Braibanti, ed.), pp. 339–353, D. Reidel Publishing Co., Dordrecht, Holland.Google Scholar
  56. Gliozzi, A., Rolandi, R., De Rosa, M., and Gambacorta, A., 1982a, Artificial black membranes from bipolar lipids of thermophilic Archaebacteria, Biophys. J. 37: 563 – 566.Google Scholar
  57. Gliozzi, A., Rolandi, R., De Rosa, M., Gambacorta, A., and Nicolaus, B., 1982b. Membrane models in Archaebacteria, in: Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), pp. 39–47, Raven Press, New York.Google Scholar
  58. Gliozzi, A., Rolandi, R., De Rosa, M., and Gambacorta, A., 1983, Monolayer black membranes from bipolar lipids of Archaebacteria and their temperature-induced structural changes, J. Membrane Biol. 75: 45 – 56.Google Scholar
  59. Goldman, D. E., 1943, Potential impedance and rectification in membranes, J. Gen. Physiol. 27: 37 – 60.PubMedGoogle Scholar
  60. Gordon, L. G. M., and Haydon, D. A., 1972, The unit conductance channel of alamethicin, Biochim. Biophys. Acta 255: 1014 – 1018.PubMedGoogle Scholar
  61. Gordon, L. G. M., and Haydon, D. A., 1976, Kinetics and stability of alamethicin conducting channels in lipid bilayers, Biochim. Biophys. Acta 436: 541 – 556.PubMedGoogle Scholar
  62. Gorter, E., and Grendel, F., 1925, On bimolecular layers of lipids on the chromocytes of the blood, J. Exp. Med. 41: 439 – 443.PubMedGoogle Scholar
  63. Grell, E., Funck, T., and Eggers, F., 1975, Structure and dynamics properties of ion-specific antibiotics, in: Membranes—A Seriesof Advances, Vol. 3 ( G. Eisenman, ed.), p. 1, Marcel Dekker, New York.Google Scholar
  64. Griffith, O. H., Dehlinger, P. J., and Van, S. P., 1974, Shape of the hydrophobic barrier of phospholipid bilayers: evidence for water penetration in biological membranes, J. Membr. Biol. 15: 159 – 192.PubMedGoogle Scholar
  65. Hagins, W. A., 1972, The visual process: excitatory mechanisms in the primary receptor cells, Annu. Rev. Bioeng. 1: 131 – 158.Google Scholar
  66. Hall, D. O., and Rao, K. K., 1977, Photosynthesis, Edward Arnold, London.Google Scholar
  67. Hall, J. E., and Latorre, R., 1976, Nonactin-K+ complex as a probe for membrane asymmetry, Biophys. J. 16: 99 – 103.PubMedGoogle Scholar
  68. Herrmann, T. R., and Rayfield, G. W., 1978, The electrical response to light of bacteriorhodopsin in planar membranes, Biophys. J. 21: 111 – 125.PubMedGoogle Scholar
  69. Hill, T. L., and Chen, Y. D., 1972, On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K-channels, Biophys. J. 12: 948 – 959.PubMedGoogle Scholar
  70. Hille, B., 1970, Ionic channels in nerve membranes, in: Progress in Biophysics and Molecular Biology, Vol. 21 ( J. A. V. Butler and D. Noble, eds.), pp. 1 – 32, Pergamon Press, Oxford.Google Scholar
  71. Hille, B., 1973, Potassium channels in myelinated nerve. Selective permeability to small cations, J. Gen. Physiol. 61: 669 – 686.PubMedGoogle Scholar
  72. Hille, B., 1975a, Ionic selectivity, saturation and block in sodium channels. A four barrier model, J. Gen. Physiol. 66: 535 – 560.Google Scholar
  73. Hille, B., 1975b, Ionic selectivity of Na and K channels in nerve membranes, in: Membranes— A series of Advances vol 3 Dynamic Properties of Lipid Bilayers and Biological Membranes (G. Eisenmann, ed.), pp. 255–323, Marcel Dekker, New York.Google Scholar
  74. Hille, B., and Schwartz, W., 1978, Potassium channels as multiion single-file pores, J. Gen. Physiol. 72: 409 – 442.PubMedGoogle Scholar
  75. Hladky, S. B., 1972, The steady state theory of carrier transport of ions, J. Membr. Biol. 10: 67.PubMedGoogle Scholar
  76. Hladky, S. B., and Haydon, D. A., 1972, Ion transfer across lipid membranes in the presence of Gramicidin A. I. Studies of the unit conductance channel, Biochim. Biophys. Acta 279:244– 312.Google Scholar
  77. Hladky, S. B., and Haydon, D. A., 1973, Membrane conductance and surface potential, Biochim. Biophys. Acta 318: 464 – 468.Google Scholar
  78. Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of giant axon of Loligo, J. Physiol. (Lond.) 116: 449 – 472.Google Scholar
  79. Hodgkin, H., and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  80. Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (Lond.) 108: 37 – 77.Google Scholar
  81. Hong, F. T., 1976, Charge transfer across pigmented bilayer lipid membrane and its interfaces, Photochem. Photobiol. 24: 155 – 189.PubMedGoogle Scholar
  82. Hong, F. T., and Montal, M., 1979, Bacteriorhodopsin in model membranes. A new component in the displacement photocurrent in the microsecond time scale, Biophys. J. 25: 465 – 472.PubMedGoogle Scholar
  83. Hong, K., and Hubbel, W. L., 1972, Preparation and properties of phospholipid bilayers containing rhodopsin, Proc. Natl. Acad. Sci. USA 69: 2617 – 2621.PubMedGoogle Scholar
  84. Hubbel, W. L., and Bownds, M. D., 1979, Visual transduction in vertebrate photoreceptors, Annu. Rev. Neurosci.2: 17 – 34.Google Scholar
  85. Hwang, S., Korenbrot, J. I., and Stoeckenius, W., 1977a, A structural and spectroscopic characteristics of bacteriorhodopsin at an air-water interface film, J. Membr. Biol. 36: 115 – 135.Google Scholar
  86. Hwang, S., Korenbrot, J. I., and Stoeckenius, W., 1977b, Proton transport by bacteriorhodopsin through an interface film, J. Membr. Biol. 36:137–158.Google Scholar
  87. Hwang, F., Korenbrot, J. I., and Stoeckenius, W., 1978, Transient photovoltages in purple membrane multilayers, Biochim. Biophys. Acta 509: 300 – 317.PubMedGoogle Scholar
  88. Katz, B., 1966, Nerve, Muscle and Synapses, McGraw-Hill, New York.Google Scholar
  89. Katz, B., and Miledi, R., 1970, Membrane noise produced by acetylcholine, Nature (Lond.) 225: 962 – 963.Google Scholar
  90. Katz, B., and Miledi, R., 1972, The statistical nature of acetylcholine potential and its molecular components, J. Physiol. (Lond.) 224: 665 – 699.Google Scholar
  91. Kayushin, L. P., and Skulachev, V. P., 1974, Bacteriorhodopsin as an electrogenic proton pump: reconstitution of bacteriorhodopsin proteoliposomes generating AΔψ and Δ, FEBS Lett. 39: 39 – 42.PubMedGoogle Scholar
  92. Keynes, R. D., Malachowsky, G. C., Van Helden, D. F., and Greef, N. G., 1980, Components of the asymmetry current in the squid giant axon, in: Twenty-eighth International Congress of Physiological Sciences, Budapest, 1980, pp. 26 – 29, Pergamon Press- Akademiai Kiado, Oxford.Google Scholar
  93. Keynes, R. D., and Rojas, E., 1976, The temporal and steady state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon, J. Physiol. (Lond.) 255: 157 – 189.Google Scholar
  94. Keynes, R. D., Greeff, N. G., and van Helden, D. F., 1982, The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon, Proc. R. Soc. Lond. B 215: 391 – 409.PubMedGoogle Scholar
  95. Kolb, H. A., and Lauger, P., 1978, Spectral analysis of current noise generated by carrier- mediated ion transport, J. Membr. Biol. 41: 167 – 187.Google Scholar
  96. Kubo, R., 1957, Statistical mechanical theory of irreversible processes. General theory and simple applications to magnetic and conduction processes, Nippon Seirigafcu Zasshi 12: 570.Google Scholar
  97. Latorre, R., and Alvarez, O., 1981, Voltage-dependent channels in planar lipid membranes, Physiol. Rev. 61: 77 – 150.PubMedGoogle Scholar
  98. Latorre, R., Ehrenstein, G., and Lecar, H., 1972, Ion transport through excitability inducing material (EIM) channels in lipid bilayer membranes, J. Gen. Physiol. 60: 72 – 85.PubMedGoogle Scholar
  99. Laüger, P., 1975, Shot noise in ion channels, Biochim. Biophys. Acta 413: 1 - 10.PubMedGoogle Scholar
  100. Laüger, P., 1980, Kinetic properties of ion carriers and channels, J. Membr. Biol. 57: 163 – 178.PubMedGoogle Scholar
  101. Le Blanc, O. H., Jr., 1971, The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanide w-chlorophenylhydrazone, J. Membr. Biol. 4: 227.Google Scholar
  102. Liberman, E. A., Topaly, V. P., Silberstein, A., and Okhlobistin, O., 1971, Mobile ion-carriers and the negative resistance of membranes. 1. Uncoupling agents of oxidative phosphoryl- ation-proton carriers, Biophysics 16: 637 – 639.Google Scholar
  103. MacDonald, D. K., 1962, Noise and Fluctuations, An Introduction, Wiley, New York.Google Scholar
  104. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, in: Current Topics in Membrane Transport, vol. 9 ( F. Bronner and A. Kleinzeller, eds.), pp. 71 – 139, Academic Press, New York.Google Scholar
  105. Menestrina, G. F., and Antolini, R., 1981, Ion transport through hemocyanin channels in oxidized cholesterol artificial bilayer membranes, Biochim. Biophys. Acta 643: 616 – 625.PubMedGoogle Scholar
  106. Montal, M., 1979, Rhodopsin in model membranes, Biochim. Biophys. Acta 559: 231 – 257.PubMedGoogle Scholar
  107. Montal, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69: 3561 – 3566.PubMedGoogle Scholar
  108. Montal, M., Darszon, A., and Trissl, H. W., 1977, Transmembrane channel formation in rho- dopsin-containing bilayer membranes, Nature (Lond.) 267: 221 – 225.Google Scholar
  109. Montal, M., Darszon, A., and Schindler, A., 1981, Functional reassembly of membrane proteins in planar lipid bilayers, Q. Rev. Biophys. 14(1):1 –79.PubMedGoogle Scholar
  110. Moore, L. E., and Neher, E., 1976, Fluctuation and relaxation analysis of monazomycin-induced conductance in black lipid membranes, Membr. Biol. 27: 347 – 362.Google Scholar
  111. Mueller, P., and Rudin, D. O., 1963, Induced excitability in reconstituted cell structure, J. Theor. Biol. 4: 268 – 280.PubMedGoogle Scholar
  112. Mueller, P., and Rudin, D. O., 1968, Action potentials induced in bimolecular lipid membranes, Nature (Lond.) 217: 713 – 719.Google Scholar
  113. Mueller, P., Rudin, D. O., Ti Tien, H., and Wescott, W. C., 1962, Reconstitution of excitable membrane structure in vitro, Circulation 26: 1167.Google Scholar
  114. Mueller, R. V., and Finkelstein, A., 1972, The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin, J. Gen. Physiol. 60: 285 – 306.Google Scholar
  115. Neher, E., and Sackman, B., 1976, Single-channel currents from membrane of denervated frog muscle fibers, Nature (Lond.) 260: 799 – 802.Google Scholar
  116. Neher, E., and Zingsheim, H. P., 1974, The properties of ionic channels measured by noise analysis in thin lipid membranes, Pfluegers Arch. 351: 61 – 67.Google Scholar
  117. Neumcke, B., 1978, 1/f noise in membranes, Biophys. Struct. Mech. 4:179–199.Google Scholar
  118. Neumcke, B., and Bamberg, E., 1975, The action of uncouplers on lipid bilayer membranes, in: Membranes—A Series of AdvancesVol. 3 ( G. Eisenman, ed.), p. 215, Marcel Dekker, New York.Google Scholar
  119. Nicholson, G. L., 1976, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmatic influence over cell surface components, Biochim. Biophys. Acta 457: 57 – 108.Google Scholar
  120. Nonner, W., Rojas, E., and Stampfli, R., 1975, Displacement currents in the node of Ranvier. Voltage and time dependence, Pfluegers Arch. 354: 1 – 18.Google Scholar
  121. Packham, N. K., Dutton, P. L., and Mueller, P., 1982, Photoelectric currents across planar bilayer membranes containing bacterial reaction centers, Biophys. J. 37: 465 – 473.PubMedGoogle Scholar
  122. Parling, B., and Eyring, H., 1954, Membrane permeability and electrical potential, in: Ion Transport across Membranes( H. T. Clark, ed.), pp. 103 – 118, Academic Press, New York.Google Scholar
  123. Pepe, I. M., and Gliozzi, A., 1983, Model photoresponsive membranes, in: Molecular Models of Photoresponsiveness( G. Montagnoli and B. F. Erlanger, eds.), pp 337 – 354, Plenum Press, New York.Google Scholar
  124. Polans, A. S., Hermolin, J., and Bownds, D., 1979, Light-induced dephosphorylation of two proteins in frog rod outer segments. Influence of cyclic nucleotides and calcium, J. Gen. Physiol. 74: 595 – 613.PubMedGoogle Scholar
  125. Poussart, D. J. M., 1971, Membrane current noise in lobster axon under voltage clamp, Biophys. J. 11: 211 – 234.PubMedGoogle Scholar
  126. Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249:662– 663.PubMedGoogle Scholar
  127. Schauf, C. L., and Bullock, J. O., 1979, Ion channels in membranes: the physical basis of excitability in nerve and muscle, Sci. Prog. 66: 231 – 248.PubMedGoogle Scholar
  128. Schindler, H., 1980, Formation of planar bilayers from artificial or native membrane vesicles, FEBS Lett. 104: 157 – 160.Google Scholar
  129. Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmoratain planar membranes, Proc. Natl. Acad. Sci. USA77: 3052 – 3056.PubMedGoogle Scholar
  130. Schoch, P., Sargent, D. F., and Swyzer, R., 1979, Capacitance and conductance as tools for the measurement of asymmetric surface potentials and energy barriers of lipid bilayer membranes, J. Membr. Biol. 46: 71 – 89.PubMedGoogle Scholar
  131. Schönfeld, M., Montal, M., and Feher, G., 1979, Functional reconstitution of photosynthetic reaction centers in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 76: 6351 – 6355.PubMedGoogle Scholar
  132. Schwartz, T. L., 1971, The thermodynamic foundations of membrane physiology, in: Biophysics and Physiology of Excitable Membranes( W. J. Adelman, Jr., ed.), pp. 47 – 95, Van Nostrand-Reinhold, New York.Google Scholar
  133. Siebenga, E. and Verveen, A. A., 1972, Membrane noise and ion transport in the node of Ran- vier, Biomembranes3: 473 – 482.PubMedGoogle Scholar
  134. Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature (Lond.) 287: 447 – 449.Google Scholar
  135. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720 – 731.PubMedGoogle Scholar
  136. Stark, G., Ketterer, B., Benz, R., and Laüger, P., 1971, The rate constants of valinomycin- mediated ion transport through thin lipid membranes, Biophys. J. 11: 981 – 994.PubMedGoogle Scholar
  137. Stevens, C. F., 1972, Inferences about membrane properties from electrical noise measurements, Biophys. J. 12: 1028 – 1047.PubMedGoogle Scholar
  138. Stevens, C. F., 1977, Study of membrane permeability changes by fluctuation analysis, Nature (Lond.) 270: 391 – 396.Google Scholar
  139. Stoeckenius, W., Lozier, R. H., and Bogomolni, R. A., 1979, Bacteriorhodopsin in the purple membrane of halobacteria, Biochim. Biophys. Acta 505: 215 – 278.PubMedGoogle Scholar
  140. Tien, H. Ti, 1968, Light induced phenomena in black lipid membranes constituted from photo- synthetic pigments, Nature (Lond.) 219: 272 – 274.Google Scholar
  141. Tien, H. Ti, 1976, Electronic processes and photoelectric aspects of bilayer lipid membranes, Photochem. Photobiol. 24: 97 – 116.PubMedGoogle Scholar
  142. Tien, H. Ti., 1979, Photoeffects in pigmented bilayer lipid membranes, in: Photosynthesis in Relation to Model Systems( J. Barber, ed.), pp. 116 – 173, Elsevier North-Holland Biomedical Press, New York.Google Scholar
  143. Träuble, H., and Sackmann, E., 1972, Studies on the crystalline-liquid crystalline phase transition of lipid model membranes. III. Structure of a steroid-lecithin system below and above the lipid phase transition, J. Am. Chem. Soc. 94(13): 4499 – 4510.PubMedGoogle Scholar
  144. Träuble, H., and Sackmann, E., 1973, Lipid motion and rhodopsin rotation, Nature (Lond.) 245: 209 – 211.Google Scholar
  145. Trissl, H. W., and Läuger, P., 1970, Photoelectric effects in thin chlorophyll films, Z. Natur- forsch. 25b: 1059.Google Scholar
  146. Trissl, H. W., and Montal, M., 1977, Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin Nature (Lond.) 266: 655 – 657.Google Scholar
  147. Ulbricht, W., 1977, Ionic channels and gating currents in excitable membranes, Annu. Rev. Biophys. Bioeng. 6: 7.PubMedGoogle Scholar
  148. Ullrich, H. M., and Kuhn, H., 1972, Photoelectric effects in biomolecular lipid-dye membranes, Biochim. Biophys. Acta 266: 584 – 596.PubMedGoogle Scholar
  149. Verveen, A. A., and De Felice, L. J., 1974, Membrane noise, in: Progress in Biophysics and Molecular Biology, Vol. 28 ( J. A. V. Butler and D. Noble, eds.), pp. 189 – 265, Pergamon Press, Oxford.Google Scholar
  150. Verveen, A. A., and Derksen, H. E., 1965, Fluctuations in membrane potential of axons and the problem of coding, Kybernetik 2: 152 – 160.Google Scholar
  151. White, S., 1978, Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene, Biophys. J. 23: 337 – 347.PubMedGoogle Scholar
  152. Woodbury, J. W., 1971, Eyring rate theory model of the current-voltage relationships of ion channels in excitable membranes, in: Advances in Chemical Physics( J. Hirshfelder, ed.), Vol. XXI, pp. 601 – 617, Wiley (Interscience), New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Alessandra Gliozzi
    • 1
  • Ranieri Rolandi
    • 1
  1. 1.Istituto di Scienze FisicheUniversità di GenovaGenoaItaly

Personalised recommendations