Skip to main content

Physics of Diving and Physical Effects on Divers

  • Chapter
Book cover The Physician’s Guide to Diving Medicine

Abstract

Everyone on earth is continuously exposed, under normal circumstances, to the pressure of the earth’s atmosphere, which at sea level amounts to 14.7 pounds per square inch (psi) of body surface. Most of the time people do not think about air pressure or the air they breathe. They become aware, however, of a change in pressure when they fly in an unpressurized airplane or when they climb a mountain, because in these situations atmospheric pressure is reduced, as is the partial pressure of oxygen, which causes shortness of breath.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, H. G., and J. W. Heim 1937. The effect of flight on the middle ear. JAMA 109: 417–421.

    Google Scholar 

  • Bennett, P. B., and D. H. Elliott 1975. The Physiology and Medicine of Diving and Compressed Air Work ( 2nd ed. ). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Clark, J. M., and C. J. Lambertsen 1971. Pulmonary oxygen toxicity: A review. Pharmacol. Rev 23: 37–133.

    PubMed  CAS  Google Scholar 

  • Coles, R. R. A. 1964. Eustachian tube function. J. R. Nav. Med. Serv 50: 23–29.

    CAS  Google Scholar 

  • Davis, J. C., and T. K. Hunt (editors) 1977. Hyperbaric Oxygen Therapy. Bethesda, MD: Undersea Medical Society.

    Google Scholar 

  • Edmonds, C., and R. L. Thomas 1972. Medical aspects of diving. Part 3. Med. J. Aust 2: 1300–1304.

    PubMed  CAS  Google Scholar 

  • Edmonds, C., P. Freeman, R. Thomas, J. Tonkin, and F. A. Blackwood 1973. Otological Aspects of Diving. Glebe, N.S.W., Australia: Australasian Med. Publ. Co.

    Google Scholar 

  • Edmonds, C., C. Lowry, and J. Pennefather 1981. Diving and Subaquatic Medicine ( 2nd ed. ). Mosman, Australia: Diving Medical Centre.

    Google Scholar 

  • Erickson, P. R. 1976. The toxicity of carbon monoxide under pressure and consideration for standards setting. In: Proceedings of the 1976 Diver’s Gas Purity Symposium. Columbus, OH: Batelle Laboratories.

    Google Scholar 

  • Flisberg, K., S. Ingelstedt, and D. Ortegren 1963. The valve and “locking” mechanisms of the Eustachian tube. Acta Oto-Larvngol. Suppl 182: 57–68.

    Article  Google Scholar 

  • Furgang, F. A. 1972. Carbon monoxide intoxication presenting as air embolism in a diver. A case report. Aerosp. Med. 43: 785–786.

    CAS  Google Scholar 

  • Gilbert, D. L. 1981. Oxygen and Living Processes. New York: Springer-Verlag.

    Book  Google Scholar 

  • Goldsmith, J. R., and S. A. Landaw. 1968. Carbon monoxide and human health. Science 162: 1352–1359. Hyperbaric Oxygen Therapy: A Committee Report 1981. Bethesda, MD: Undersea Medical Society.

    Google Scholar 

  • Keller, A. P. 1958. A study of the relationship of air pressure to myringorupture. Laryngoscope 68: 2015– 2028.

    Google Scholar 

  • Lanphier, E. H. 1957. Diving medicine. N. Engl. J. Med 256: 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Miles, S. 1969. Underwater Medicine ( 3rd ed. ). Philadelphia: J. B. Lippincott Co.

    Google Scholar 

  • Miles, S., and Mackay, D. E. 1976. Underwater Medicine. Philadelphia: J. B. Lippincott.

    Google Scholar 

  • Miller, J. W. (editor) 1979. The NOAA Diving Manual ( 2nd ed. ). Washington, DC: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.

    Google Scholar 

  • Perlman, H. B. 1943. The effect of explosions on the acoustic apparatus. Trans. Am. Acad. Ophthalmol. Otolaryngol 47: 442–453.

    Google Scholar 

  • Rahn, H., and T. Yokoyama (editors) 1965. Physiology of Breath-Hold Diving and the Ama of Japan. Washington, DC: Natl. Acad. Sci./Natl. Res. Council.

    Google Scholar 

  • Reuter, S. H. 1971. 95% of divers’ ear problems start in the eustacian tube. Clin. Trends 10: 8.

    Google Scholar 

  • Riu, R., L. Hottes, R. Guillerm, R. Badre, and R. LeDen 1969. La trompe d’eustache dans la plonge. Rev. Physiol. Subaquatique Med. Hyperbare 1: 194–198.

    Google Scholar 

  • Rodkey, F. L., J.D. O’Neal, and H. A. Collison 1969. Oxygen and carbon monoxide equilibria of human adult hemoglobin at atmospheric and elevated pressure. Blood 33: 57–65.

    PubMed  CAS  Google Scholar 

  • Schaefer, K. 1974. Carbon dioxide effects under conditions of raised environmental pressure. Rep. 804. Groton, CT: U.S. Navy Submarine Medical Research Laboratory.

    Google Scholar 

  • Shilling, C. W. 1964. Atomic Energy Encyclopedia in the Life Sciences. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Shilling, C. W., M. F. Werts, and N. R. Schandelmeier (editors) 1976. The Underwater Handbook. A Guide to Physiology and Performance for the Engineer. New York: Plenum Press.

    Google Scholar 

  • Thomas, S. C., and C. W. Shilling (editors) 1980. Carbon Dioxide Effects on Mammalian Tissue. Bethesda, MD: Undersea Medical Society.

    Google Scholar 

  • U.S. Navy 1970. US Navy Diving Manual Washington, DC: Department of the Navy. (NAVSHIPS 0994– 001–9010.)

    Google Scholar 

  • U.S. Navy 1973. Diving Manual, Vol. I, Change 2. Washington, DC: U.S. Department of the Navy. (NAVSHIPS 0994–001–9010.)

    Google Scholar 

  • U.S. Navy 1978. U.S. Navy Diving Manual Washington, DC: Department of the Navy. (NAVSEA 0994- LP-001–9010.)

    Google Scholar 

  • Williams, D. H., and E. Cohen 1972. Human thresholds for perceiving sudden changes in atmospheric pressure. Percept. Mot. Skills 35: 437–438.

    Article  PubMed  CAS  Google Scholar 

  • Vail, H. H. 1929. Traumatic conditions of the ear in workers in an atmosphere of compressed air. Arch. Otolaryngol 10: 113–126.

    Google Scholar 

  • Vorosmarti, J., Jr., M. E. Bradley, P. G. Linaweaver, J. C. Kleckner, and W. F. Armstrong 1970. Helium-oxygen saturation diving. I. Hematologic, lactic acid dehydrogenase and carbon monoxide-carb- oxyhemoglobin studies. Aerosp. Med 41: 1347–1353.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Shilling, C.W., Faiman, M.D. (1984). Physics of Diving and Physical Effects on Divers. In: Shilling, C.W., Carlston, C.B., Mathias, R.A. (eds) The Physician’s Guide to Diving Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2671-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2671-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9663-8

  • Online ISBN: 978-1-4613-2671-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics