Physics of Diving and Physical Effects on Divers

  • Charles W. Shilling
  • Morris D. Faiman

Abstract

Everyone on earth is continuously exposed, under normal circumstances, to the pressure of the earth’s atmosphere, which at sea level amounts to 14.7 pounds per square inch (psi) of body surface. Most of the time people do not think about air pressure or the air they breathe. They become aware, however, of a change in pressure when they fly in an unpressurized airplane or when they climb a mountain, because in these situations atmospheric pressure is reduced, as is the partial pressure of oxygen, which causes shortness of breath.

Keywords

Toxicity Convection Mercury Helium Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, H. G., and J. W. Heim 1937. The effect of flight on the middle ear. JAMA 109: 417–421.Google Scholar
  2. Bennett, P. B., and D. H. Elliott 1975. The Physiology and Medicine of Diving and Compressed Air Work ( 2nd ed. ). Baltimore: Williams and Wilkins.Google Scholar
  3. Clark, J. M., and C. J. Lambertsen 1971. Pulmonary oxygen toxicity: A review. Pharmacol. Rev 23: 37–133.PubMedGoogle Scholar
  4. Coles, R. R. A. 1964. Eustachian tube function. J. R. Nav. Med. Serv 50: 23–29.Google Scholar
  5. Davis, J. C., and T. K. Hunt (editors) 1977. Hyperbaric Oxygen Therapy. Bethesda, MD: Undersea Medical Society.Google Scholar
  6. Edmonds, C., and R. L. Thomas 1972. Medical aspects of diving. Part 3. Med. J. Aust 2: 1300–1304.PubMedGoogle Scholar
  7. Edmonds, C., P. Freeman, R. Thomas, J. Tonkin, and F. A. Blackwood 1973. Otological Aspects of Diving. Glebe, N.S.W., Australia: Australasian Med. Publ. Co.Google Scholar
  8. Edmonds, C., C. Lowry, and J. Pennefather 1981. Diving and Subaquatic Medicine ( 2nd ed. ). Mosman, Australia: Diving Medical Centre.Google Scholar
  9. Erickson, P. R. 1976. The toxicity of carbon monoxide under pressure and consideration for standards setting. In: Proceedings of the 1976 Diver’s Gas Purity Symposium. Columbus, OH: Batelle Laboratories.Google Scholar
  10. Flisberg, K., S. Ingelstedt, and D. Ortegren 1963. The valve and “locking” mechanisms of the Eustachian tube. Acta Oto-Larvngol. Suppl 182: 57–68.CrossRefGoogle Scholar
  11. Furgang, F. A. 1972. Carbon monoxide intoxication presenting as air embolism in a diver. A case report. Aerosp. Med. 43: 785–786.Google Scholar
  12. Gilbert, D. L. 1981. Oxygen and Living Processes. New York: Springer-Verlag.CrossRefGoogle Scholar
  13. Goldsmith, J. R., and S. A. Landaw. 1968. Carbon monoxide and human health. Science 162: 1352–1359. Hyperbaric Oxygen Therapy: A Committee Report 1981. Bethesda, MD: Undersea Medical Society.Google Scholar
  14. Keller, A. P. 1958. A study of the relationship of air pressure to myringorupture. Laryngoscope 68: 2015– 2028.Google Scholar
  15. Lanphier, E. H. 1957. Diving medicine. N. Engl. J. Med 256: 120–131.PubMedCrossRefGoogle Scholar
  16. Miles, S. 1969. Underwater Medicine ( 3rd ed. ). Philadelphia: J. B. Lippincott Co.Google Scholar
  17. Miles, S., and Mackay, D. E. 1976. Underwater Medicine. Philadelphia: J. B. Lippincott.Google Scholar
  18. Miller, J. W. (editor) 1979. The NOAA Diving Manual ( 2nd ed. ). Washington, DC: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.Google Scholar
  19. Perlman, H. B. 1943. The effect of explosions on the acoustic apparatus. Trans. Am. Acad. Ophthalmol. Otolaryngol 47: 442–453.Google Scholar
  20. Rahn, H., and T. Yokoyama (editors) 1965. Physiology of Breath-Hold Diving and the Ama of Japan. Washington, DC: Natl. Acad. Sci./Natl. Res. Council.Google Scholar
  21. Reuter, S. H. 1971. 95% of divers’ ear problems start in the eustacian tube. Clin. Trends 10: 8.Google Scholar
  22. Riu, R., L. Hottes, R. Guillerm, R. Badre, and R. LeDen 1969. La trompe d’eustache dans la plonge. Rev. Physiol. Subaquatique Med. Hyperbare 1: 194–198.Google Scholar
  23. Rodkey, F. L., J.D. O’Neal, and H. A. Collison 1969. Oxygen and carbon monoxide equilibria of human adult hemoglobin at atmospheric and elevated pressure. Blood 33: 57–65.PubMedGoogle Scholar
  24. Schaefer, K. 1974. Carbon dioxide effects under conditions of raised environmental pressure. Rep. 804. Groton, CT: U.S. Navy Submarine Medical Research Laboratory.Google Scholar
  25. Shilling, C. W. 1964. Atomic Energy Encyclopedia in the Life Sciences. Philadelphia: W. B. Saunders.Google Scholar
  26. Shilling, C. W., M. F. Werts, and N. R. Schandelmeier (editors) 1976. The Underwater Handbook. A Guide to Physiology and Performance for the Engineer. New York: Plenum Press.Google Scholar
  27. Thomas, S. C., and C. W. Shilling (editors) 1980. Carbon Dioxide Effects on Mammalian Tissue. Bethesda, MD: Undersea Medical Society.Google Scholar
  28. U.S. Navy 1970. US Navy Diving Manual Washington, DC: Department of the Navy. (NAVSHIPS 0994– 001–9010.) Google Scholar
  29. U.S. Navy 1973. Diving Manual, Vol. I, Change 2. Washington, DC: U.S. Department of the Navy. (NAVSHIPS 0994–001–9010.)Google Scholar
  30. U.S. Navy 1978. U.S. Navy Diving Manual Washington, DC: Department of the Navy. (NAVSEA 0994- LP-001–9010.)Google Scholar
  31. Williams, D. H., and E. Cohen 1972. Human thresholds for perceiving sudden changes in atmospheric pressure. Percept. Mot. Skills 35: 437–438.PubMedCrossRefGoogle Scholar
  32. Vail, H. H. 1929. Traumatic conditions of the ear in workers in an atmosphere of compressed air. Arch. Otolaryngol 10: 113–126.Google Scholar
  33. Vorosmarti, J., Jr., M. E. Bradley, P. G. Linaweaver, J. C. Kleckner, and W. F. Armstrong 1970. Helium-oxygen saturation diving. I. Hematologic, lactic acid dehydrogenase and carbon monoxide-carb- oxyhemoglobin studies. Aerosp. Med 41: 1347–1353.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Charles W. Shilling
  • Morris D. Faiman

There are no affiliations available

Personalised recommendations