Advertisement

Molecular Mechanisms of Mutagenesis and Carcinogenesis

  • M. Kirsch-Volders
  • M. Radman
  • P. Jeggo
  • L. Verschaeve

Abstract

A given mutagen interacting with the cell may induce different types of genetic lesions, ranging from a single-base modification, which might completely be restored in its initial form, to a chromatid break or to the loss of a chromosome.

Keywords

Chromosomal Rearrangement Sister Chromatid Chromosome Aberration Metaphase Chromosome Sister Chromatid Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, S., Bender, M. A., Conger, A. D., and Wolff, S., 1973, Uniformity of radiation-induced mutation rates among different species, Nature 245: 460–462PubMedCrossRefGoogle Scholar
  2. Adams, R. L. P., 1974, Newly synthesized DNA is not methylated, Biochim. Biophvs. Acta 335: 365–373Google Scholar
  3. Arrighi, F. E., and Saunders, G. F., 1973, The relationship between repetitious DNA and constitutive heterochromatin with special reference to man, in Modern Aspects of Cytogenetics: Constitutive Heterochromatin in Man, Symposium Medica HoechstGoogle Scholar
  4. Arrighi, F. E., and Hsu, F. C., 1965, Experimental alteration of metaphase chromosome morphology, Exp. Cell Res. 39: 305–318PubMedCrossRefGoogle Scholar
  5. Athanasiou, K., and Kyrtopoulos, S. A., 1981, Induction of sister chromatid exchanges by nonmutagenic carcinogens, in Chromosome Damage and Repair (edited by E. Seeberg) Plenum Press, New YorkGoogle Scholar
  6. Aula, P., and Von Koskull, H., 1976, Distribution of spontaneous chromosome breaks in human chromosomes, Hum. Genet. 32: 143–148PubMedCrossRefGoogle Scholar
  7. Aurias, A., Prieur, M., Dutrillaux, B.,and Lejeune, J., 1978, Systematic analysis of 95 reciprocal translocations of autosomes, Hum. Genet. 45: 259–282PubMedCrossRefGoogle Scholar
  8. Ayala, F., 1967, Evolution of fitness in irradiated populations of Drosophila serrata, Proc. Natl Acad. Sci. USA. 58: 1919–1924PubMedCrossRefGoogle Scholar
  9. Aymé, S., Mattei, J. F., Mattei, M. G., Aurran, Y., and Giraud, F., 1976, Nonrandom distribution of chromosome breaks in cultured lymphocytes of normal subjects, Hum. Genet. 31: 161–175PubMedCrossRefGoogle Scholar
  10. Bak, A. L., Bak, P., and Zeuthen, J., 1979, Higher levels of organization in chromosomes, J. Theor. Biol. 76: 205–217PubMedCrossRefGoogle Scholar
  11. Barbin, A., Bartsch, H., Leconte, P., and Radman, M., 1981, Studies on the miscoding properties of l,N6-ethenoadenine and 3,N4-ethenocytosine, DNA reaction products of vinyl chloride metabolities, during in vitro DNA synthesis, Nucleic Acids Res. 9: 375–387PubMedCrossRefGoogle Scholar
  12. Bender, M. A., Griggs, H. G., and Bedford, J. S., 1974, Mechanisms of chromosomal aberration production. III. Chemicals and ionizing radiation, Mutat. Res. 23: 197–212PubMedCrossRefGoogle Scholar
  13. Beuzer, S., 1962, On the topography of the genetic fine structure, Proc. Natl. Acad. Sci. USA. 47: 410–415Google Scholar
  14. Bessman, M. J., Muzyeska, N., Goodman, M. T., and Schnaar, R. L., 1974, Studies on the biochemical basis of spontaneous mutation, J. Mol. Biol. 88: 409–421PubMedCrossRefGoogle Scholar
  15. Bhambiani, R., Kuspira, J., and Giblak, R. E., 1973, A comparison of cell survival and chromosome damage using CHO cells synchronized with and without colcemid, Can. J. Genet. Cvtol. 14: 605–618Google Scholar
  16. Bissell, M. J., Hatie, C., and Calvin, M., 1979, Is the product of srcgenea promotor? Proc. Natl. Sci. USA. 76: 348–352CrossRefGoogle Scholar
  17. Bodell, W. J., 1977, Nonuniform distribution of DNA repair in chromatin after treatment with methyl methane sulfonate, Nucleic. Acid. Res. 4: 2619–2628PubMedCrossRefGoogle Scholar
  18. Bostock, C. J., and Sumner, A. T., 1978, Chromosome damage and repair, in The Eucaryotic Chromosome (edited by C. J. Bostock and A. T. Sumner) North Holland Publishing Company, Amsterdam, pp. 437–473Google Scholar
  19. Bourgeois, C. A., 1974, Distribution of mitomycin-C-induced damage in human chromosomes with special reference to regions of repetitive DNA, Chromosoma 48: 203–211PubMedCrossRefGoogle Scholar
  20. Brinkley, B. R., and Rao, P. M., 1973, Nitrous oxide effects on the mitotic apparatus and chromosome movementHela cells, J. Cell Biol. 58: 96–106CrossRefGoogle Scholar
  21. Brinkley, B. R., and Shaw, H. W., 1970, Ultrastructural aspects of chromosome damage, in Genetic Concepts and Neoplasma. A collection of papers presented at the XXIIIth An. Symp. on Fundamental Cancer Research, Williams and Wilkins, Baltimore, pp. 313–345Google Scholar
  22. Brewen, J. G., Preston, R. J., Jones, K. P., and Gosslee, G. E., 1973, Genetic hazards of ionizing radiations: cytogenetic extrapolations from mouse to man, Mutat. Res. 17: 245–254PubMedCrossRefGoogle Scholar
  23. Brewen, J. G., 1976, Practical evaluation of mutagenicity data in mammals for estimating human risk, Mutat. Res. 41: 15–24PubMedCrossRefGoogle Scholar
  24. Brøgger, A., 1971, Apparently spontaneous chromosome damage in human leukocytes and the nature of chromatid gaps, Humangenetik 13: 1–14PubMedCrossRefGoogle Scholar
  25. Brøgger, A., 1975, Is the chromatid gap a folding defect due to protein change? Evidence from mercaptoethanol treatment of human lymphocyte chromosomes, Hereditas 80: 131–136PubMedCrossRefGoogle Scholar
  26. Brøgger, A., 1977, Nonrandom localization of chromosome damage in human cells and targets for clastogenic action, in Chromosomes Today, Vol. 6 (edited by A. de la Chapelle and M. Sorsa ), Elsevier, New York, pp. 297–306Google Scholar
  27. Brøgger, A., 1979, Chromosome damage in human mitotic cells after in vivo and in vitro exposure to mutagens, in Genetic Damage in Man Caused by Environmental Agents, (edited by R. Berg ), Academic Press, New York, pp. 87–99Google Scholar
  28. Bruttag, D., and Kornberg, A., 1972, Enzymatic synthesis of deoxyribonucleic acid, XXXVI: A proofreading action for the 3’– 5’ exonuclease activity in deoxyribonucleic acid polymerases, J. Biol. Chem. 247: 241–248Google Scholar
  29. Buckton, K. E., 1976, Identification with G- and R-banding of the position of breakage points induced in human chromosomes by in vitro x-irradiation, Int. J. Radiat. Biol. 29 (5): 475–488CrossRefGoogle Scholar
  30. Cabral, F., Sobel, M. E., and Gottesman, M. M., 1980, CHO mutants resistant to colchicine, colcemid, or griveofulvin have an altered β-tubulin, Cell 20: 29–36PubMedCrossRefGoogle Scholar
  31. Cairns, J., 1981, The origin of human cancers, Nature 289: 353–357PubMedCrossRefGoogle Scholar
  32. Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell 20: 579–595PubMedCrossRefGoogle Scholar
  33. Cann, J. R., and Hirman, N. D., 1975, Interaction of chlorpromazine with brain microtubule subunit protein, Mol. Pharmacol. 11: 256–267PubMedGoogle Scholar
  34. Caspersson, T., Haglund, U., Lindell, B., and Zech, L., 1972, Radiation-induced nonrandom chromosome breakage, Exp. Cell Res. 75: 541–543PubMedCrossRefGoogle Scholar
  35. Carrano, A. V., 1975, Induction of chromosome aberrations in human lymphocytes by X rays and fission neutrons: Dependence on cell cycle stage, Radiat. Res. 63: 403–421PubMedCrossRefGoogle Scholar
  36. Cech, T., and Pardue, M. L., (1977), Cross-linking of DNA with trimethylpsoralen is a probefor chromatin structure, Cell 11: 631–640PubMedCrossRefGoogle Scholar
  37. Chaganti, R. S. K., Schonberg, S., and German, J., 1974, A many-fold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes, Proc. Natl. Acad. Sci. USA. 71 (11): 4508–4512PubMedCrossRefGoogle Scholar
  38. Chu, E. H. Y., Giles, N. H., and Passano, K., (1962), Types and frequencies of human chromosome aberrations induced by X rays, Proc. Natl. Acad. Sci. USA. 48: 522–532CrossRefGoogle Scholar
  39. Cleaver, J. E., 1975, Methods for studying repair of DNA damaged by physical and chemical carcinogens, in Methods in Cancer Research (edited by H. Busch) Academic Press, New York, Vol. 11, pp. 123–165Google Scholar
  40. Cleaver, J. E., 1978, DNA repair and its coupling to DNA replication in eukaryotic cells, Biochim. Biophvs. Acta 516: 489–516Google Scholar
  41. Cohen, M. M., Shaham, M., Dagan, J., Shmueli, E., and Kohn, G., 1975, Cytogenetic investigations in families with ataxia telangiectasia, Cytogenet. Cell Genet. 15: 338–356PubMedCrossRefGoogle Scholar
  42. Comings, D. E., 1978, Mechanisms of chromosome banding and implications for chromosome structure, Ann. Rev. Genet. 12: 25–46PubMedCrossRefGoogle Scholar
  43. Comings, D. E., 1974, What is a chromosome break? in Chromosomes and Cancer (edited by J. Eerman) John Wiley and Sons, New York, pp. 95–113Google Scholar
  44. Comings, D. E., 1980, Nonhistone proteins of chromosomes and the nucleus, Abstract of the 2nd Int. Congress on Cell Biology, Berlin, p. 113Google Scholar
  45. Cooke, P., Seabright, M., and Wheeler, M., 1978, The differential distribution of x-ray-induced chromosome lesions in trypsin-banded preparations from human subjects, Humangenetik 28: 221–231Google Scholar
  46. Cooper, G. M., Okenquist, S., and Silverman, L., 1980, Transforming activity of DNA of chemically transformed and normal cells, Nature 284: 418–421PubMedCrossRefGoogle Scholar
  47. Corneo, G., Ginelli, E., and Polli, E., 1968, Isolation of the complementary strands of a human satellite DNA, J. Mol. Biol. 33: 331–335PubMedCrossRefGoogle Scholar
  48. Coulondre, C. and Miller, J. H., 1977, Genetic studies of the Lac repressor. IV. Mutagen specificity in the Lac i gene of Escherichia coli, J. Mol. Biol. 117: 577–593PubMedCrossRefGoogle Scholar
  49. Cowell, J. K., and Wigley, C. B., 1980, Changes in DNA content during in vitro transformation of mouse salivary gland epithelium, J. Natl. Cancer Inst. 64: 1443–1448PubMedGoogle Scholar
  50. Cox, E. C., and Gibson, T. C., 1974, Selection for high mutation rates in chemostats, Genetics 77: 169–184PubMedGoogle Scholar
  51. Crossen, P. E., Drets, M. E., Arrighi, F. E., and Johnston, D. A., 1977, Analysis of the frequency and distribution of sister chromatid exchanges in cultured human lymphocytes, Hum. Genet. 35: 345 – 352PubMedCrossRefGoogle Scholar
  52. Davis, M. M., Kim, S. K., and Hood, L., 1980, Immunoglobin class switching: Developmentally regulated DNA rearrangements during differentiation, Cell 22: 1–2PubMedCrossRefGoogle Scholar
  53. De Boer, P., Van Buul, P. P. W., Van Beek, R., Van Der Hoeven, F. A., and Natarajan, A. T., 1977, Chromosomal radiosensitivity and karyotype in mice using cultured peripheral blood lymphocytes, and comparison with this system in man, Mutat. Res. 42: 379–394PubMedCrossRefGoogle Scholar
  54. Defais, M., Caillet-Fauquet, P., Fox, M. S., and Radman, M., 1976, Induction kinetics of mutagenic DNA repair activity in E. coli following UV-irradiation, Mol. Gen. Genet. 148: 125–131Google Scholar
  55. de Serres, F. J., 1979, Problems associated with the application of short-term tests for mutagenicity in man-screening programs. Environ. Mutagen. 1: 203–208PubMedCrossRefGoogle Scholar
  56. de Serres, F., and Ashby, J. (eds.), 1981, Short-term tests for carcinogenesis, in Report of the International Collaborative Program, Elsevier, New YorkGoogle Scholar
  57. De Weerd-Kasteleyn, G. A., Keijzer, W., Rainaldi, G., and Bootsman, D., 1977, Introduction of SCE in xeroderma pigmentation cells following exposure to UV light, Mutat. Res. 46:163; Abstract of paper on DNA repair mechanisms in mammalian cells, IInd Int. Workshop, May 1976, Netherlands Google Scholar
  58. Deysson, G., 1968, Antimitotic substances, Int. Rev. Cytol. 24: 99–143PubMedCrossRefGoogle Scholar
  59. Deysson, G., 1976, Recherches sur les inhibiteurs microtubulaires, J. Eur. Toxicol. 9: 259–270Google Scholar
  60. Deysson, G., 1976, Recherches sur les inhibiteurs microtubulaires, J. Eur. Toxicol. 9: 259–270Google Scholar
  61. Doubleday, O. P., Michel-Maenhaut, G., Brandenburger, A., Lecomte, P., and Radman, M., 1981, Inhibition or absence of DNA proofreading exonuclease is not sufficient to allow copying of pyrimidine dimers, in Chromosome Damage and Repair (edited by E. Seeberg) Plenum PressGoogle Scholar
  62. Drake, J. W., 1973, The genetic control of spontaneous and induced mutation rates in bacteriophage T4, Genetics (suppl.) 75: 45–51Google Scholar
  63. Drake, J. W. and Baltz, R. H., 1976, The biochemistry of mutagenesis in Annual Review of Mutagenesis, pp. 11–37Google Scholar
  64. Drake, J. W., and Koch, R. E., 1976, Mutagenesis: Benchmark Papers Vol. 4, Dowden, Hutchinson, and Ross, IncGoogle Scholar
  65. Drake, J. W., 1977, Fundamental mutagenic mechanisms and their significance for environmental mutagenesis, in Progress in Genetic Toxicology (edited by D. Scott, B. A. Bridges, and F. H. Bels) Elsevier, Amsterdam, pp. 43–55Google Scholar
  66. Druckrey, H., 1967, Quantitative aspects in chemical carcinogenesis, in Potential Carcinogenic Hazards from Drugs, UICC Monograph Series 7: 60–87, Springer-Verlag, BerlinGoogle Scholar
  67. Du Bos, C., Veigas-Pequignot, E., and Dutrillaux, B., 1978, Localization of x-ray-induced chromatid breaks using three consecutive stains, Mutat. Res. 49: 127–131CrossRefGoogle Scholar
  68. Deusberg, P. H., 1979, Transforming genes of retroviruses, Cold Spring Harbor Svmp. Quant. Bio. 44: 13–29Google Scholar
  69. Dustin, P., 1978, Microtubules, Springer-Verlag, BerlinGoogle Scholar
  70. Dutrillaux, B., Couturier, J., Viegas-Pequignot, E., and Schaison, G., 1977, Localization of chromatid breaks in Fanconi’s anemia using three consecutive stains, Hum. Genet. 37: 65–71PubMedCrossRefGoogle Scholar
  71. Evans, H. J., 1962, Chromosome aberrations induced by ionizing radiations, Int. Rev. Cytol. 13: 221–321CrossRefGoogle Scholar
  72. Evans, H. J., 1974, Effects of ionizing radiation on mammalian chromosomes, in Chromosomes and Cancer, (edited by J. German) John Wiley and Sons, New York, pp. 191 - 237Google Scholar
  73. Evans, H. J., 1977a, Molecular mechanisms in the induction of chromosome aberrations, in Progress in Genetic Toxicology (edited by D. Scott, B. A. Bridges, and F. H. Sobels) Elsevier, Amsterdam, pp. 57–74Google Scholar
  74. Evans, H. J., 1977b, Some facts and fancies relating to chromosome structure in man, in Advances in Human Genetics (edited by H. Harris and K. H. Hirschhorn) Vol. 8, Plenum Press, New YorkGoogle Scholar
  75. Evans, J. A., Canning, N., Hunter, A. G. W., Martsolf, J. T., Ray, M., Thompson, D. R., and Hamerton, J. L., 1978, A cytological survey of 14,069 newborn infants, Cytogenet. Cell Genet. 20: 96–123PubMedCrossRefGoogle Scholar
  76. Fabre, F.,and Roman, H., 1977, Genetic evidence for inducibility of recombination competence in yeast, Proc. Natl. Acad. Sci. USA. 74: 1667–1671PubMedCrossRefGoogle Scholar
  77. Felsenberg, G., 1978, Chromatin, Nature 271: 115–122CrossRefGoogle Scholar
  78. Feron, V. J., Grice, H. C., Griesemer, R., and Peto, R., 1980, Report LBasic requirements for long-term assays for carcinogenicity, in Long-Term and Short-Term Screening Assays for Carcinogens: A Critical Appraisal, IARC Monographs, Suppl. 2, pp. 21–83Google Scholar
  79. Fox, D. P., 1967, The effects of X rays on the chromosomes of locust embryos. IV. Dose response and variation in sensitivity of the cell cycle for the induction of chromatid aberrations, Chromosoma 20: 413–441CrossRefGoogle Scholar
  80. Friedrich, U., and Nielsen, J., 1973, Break points in reciprocal autosomal translocations, Hereditas 74: 141–144PubMedCrossRefGoogle Scholar
  81. Funes-Cravioto, F., Yakovienko, K. N., Kuleshov, N. P., and Zhurkov, V. S., 1974, Localization of chemically induced breaks in chromosomes of human leucocytes, Mutat. Res. 23: 87–105PubMedCrossRefGoogle Scholar
  82. Galas, D. J., and Branscomb, A. W., 1978, Enzymatic determinants of DNA polymerase accuracy. Theory of coliphage T4 polymerase mechanisms, J. Mol. Biol. 124: 653–687PubMedCrossRefGoogle Scholar
  83. Galloway, S. H., and Evans, H. J., 1975, Sister chromatid exchange in human chromosomes from normal individuals and patients with ataxia telangiectosia, Cytogenet. Cell Genet. 15: 17PubMedCrossRefGoogle Scholar
  84. Galloway, S. H., and Wolff, S. H., 1979, The relation between chemically induced sister chromatid exchanges and chromatid breakage, Mutat. Res. 61: 297–307PubMedCrossRefGoogle Scholar
  85. Geard, C. R., Colvett, R. D., and Rohrig, N., 1980, On the mechanics of chromosomal aberrations, a study with single and multiple spatially associated protons, Mutat. Res. 69: 81–99PubMedCrossRefGoogle Scholar
  86. Gerber, G. B., Leonard, A., and Jacquet, P., 1980, Toxicity, mutagenicity, and teratogenicity of lead, Mutat. Res. 76: 115–141PubMedGoogle Scholar
  87. Giraud, F., Ayme, S., Mattei, J. F., and Mattei, M. G., 1976, Constitutional chromosomal breakage, Hum. Genet. 34: 125–136PubMedCrossRefGoogle Scholar
  88. Glideman, B. W., and Radman, M., 1980, Escherichia coli mutator mutants deficient in methylation instructed DNA mismatch correction, Proc. Natl. Acad. Sci. USA. 77: 1063–1067CrossRefGoogle Scholar
  89. Goetz, P., Sram, R. J., and Dohnalova, J., 1975, Relationship between experimental results in mammals and man. I. Cytogenetic analysis of bone marrow injury induced by a single dose of cyclophosphamide, Mutat. Res. 31: 247–254PubMedGoogle Scholar
  90. Gosden, J. R., Buckland, R. A., Clayton, R. P., and Evans, H. J., 1975, Chromosomal localization of DNA sequences in condensed and dispersed human chromatin, Exp. Cell Res. 92: 138–147PubMedCrossRefGoogle Scholar
  91. Gottesman, S., 1981, Genetic control of the SOS system in E. coli, Cell 23: 1–2Google Scholar
  92. Greer, H., and Fink, G., 1979, Unstable transpositions of his4 in yeast, Proc. Natl. Acad. Sci. USA. 76: 4006–4010PubMedCrossRefGoogle Scholar
  93. Hadlaczky, G., Sumner, A. T., and Ross, A., 1981, Protein-depleted chromosomes. I. Structure of isolated protein-depleted chromosomes, Chromosoma 81: 537–555PubMedCrossRefGoogle Scholar
  94. Haglund, U., and Zech, I., 1979, Simultaneous staining of sister chromatid exchanges and Q-bands in human chromosomes after treatment with methyl methane sulphonate, quinacrine mustard, and quinacrine, Hum. Genet. 49: 307–317PubMedCrossRefGoogle Scholar
  95. Hanawalt, P. C., Cooper, P. K., Ganesan, A. K., and Smith, C. A., 1979, DNA repairin bacteria and mammalian cells, Annu. Rev. Biochim. 48: 783–836CrossRefGoogle Scholar
  96. Hansmann, I., Rohrborn, G., and Neher, J., 1975, Chromosome aberrations in metaphase. II. Oocytes of Chinese hamsters (cricetulus grisues), Mutat. Res. 29: 218–219Google Scholar
  97. Hashem, N., and Khalifa, S., 1975, Retinoblastoma: a model of hereditary fragile chromosomal regions, Hum. Hered. 25: 35–49PubMedCrossRefGoogle Scholar
  98. Heddle, J. A., Bodycotte, J., 1970, On the formation of chromosomal aberrations, Mutat. Res. 9: 117–126PubMedCrossRefGoogle Scholar
  99. Herich, R., 1969, The effect of zinc on the structure of chromosomes and on mitosis, Nucleus 12: 81–85Google Scholar
  100. Herreros, B., and Gianelli, F., 1967, Spatial distribution of old and new chromated subunits and frequency of chromatid exchanges in induced human lymphocyte endoreduplications, Nature 216: 286–288PubMedCrossRefGoogle Scholar
  101. Hicks, J., Strathern, J. N., and Klar, A. J. S., 1979, Transposable mating types genes in Saccharomyces cerevisiae, Nature 282: 478–483PubMedCrossRefGoogle Scholar
  102. Holliday, R., 1975, Further evidence for an inducible recombination repair system in Ustilago maydis, Mutat. Res. 29: 149–153PubMedCrossRefGoogle Scholar
  103. Holliday, R., 1979, A new theory of carcinogenesis, Br. J. Cancer 40: 513–522PubMedCrossRefGoogle Scholar
  104. Hollstein, M., McCann, J., Angelosanto, F. A., and Nichols, W. W., 1979, Short-term tests for carcinogens and mutagens, Mutat. Res. 65: 133–226PubMedGoogle Scholar
  105. Holmberg, M., and Jonasson, J., 1973, Preferential location of x-ray-induced chromosome breakage in the R-bands of human chromosomes, Hereditas 74: 57–68PubMedCrossRefGoogle Scholar
  106. Hsu, T. C., 1975, A possible function of constitutive heterochromatin: the bodyguard hypothesis, Symposium No. 14:Chromosome structure, Genetics 79: 137–150PubMedGoogle Scholar
  107. I ARC, 1980, 1 ARC monographs on long-term and short-term screening assays for carcinogens: A critical appraisal, Suppl. 2, Lyon, International Agency for Research on CancerGoogle Scholar
  108. Ishidate, M., Jr., and Odashima, S., 1977, Chromosome tests with 134 compounds on Chinese hamster cells in vitro—a screening for chemical carcinogens, Mutat. Res. 48: 337–354PubMedCrossRefGoogle Scholar
  109. Jacobs, P. A., Buckton, K. A., Cunningham, C., and Newton, M., 1974, An analysis of the break points of structural rearrangements in man, J. Med. Genet. ll(l): 50–64PubMedCrossRefGoogle Scholar
  110. Kakunaga, T., 1977, The transformation of human diploid cells by chemical carcinogens, in Origins of Human Cancer (edited by Hiatt, H. H., Watson, J. D., and Winsten, J. A. ), Cold Spring Harbor Laboratory, New York, pp. 1537–1548Google Scholar
  111. Kato, H., 1974, Photoreactivation of sister chromatid exchanges induced by ultraviolet irradiation, Nature 249: 552–558PubMedCrossRefGoogle Scholar
  112. Kim, M. A., 1974, Chromatidaustausch und Heterochromatinveranderungen menschlicher Chromosomenach BUdR-Markierung, Hum. Genet. 25: 179–188CrossRefGoogle Scholar
  113. Kinsella, A. R., and Radman, M., 1978, Tumor promotor induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis, Proc. Natl. Acad. Sci., USA. 75: 6149–6153PubMedCrossRefGoogle Scholar
  114. Kinsella, A. R., and Radman, M., 1980, Inhibition of carcinogen-induced chromosomal aberrations by an anticarcinogenic protease inhibitor, Proc. Natl. Acad. Sci. USA. 77: 3544–3547PubMedCrossRefGoogle Scholar
  115. Klar, A. J. S., Mclndoo, J., Strathern, J. N., and Hicks, J. B., 1980, Evidence for a physical interaction between the transposed and the substituted sequences during mating-type gene transposition in yeast, Cell 22: 291–298PubMedCrossRefGoogle Scholar
  116. Kornberg, R. D., 1977, Structure of chromatin, Annu. Rev. Biochem. 46: 931–954PubMedCrossRefGoogle Scholar
  117. Kucerova, M., and Polivkova, L., 1976, Banding technique used for the detection of chromosomal aberrations induced by radiation and alkylating agents tepa and epichloro- hydrin, 1976, Mutat. Res. 34: 279–290PubMedCrossRefGoogle Scholar
  118. Lacks, S., and Greenberg, B., 1977, Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation, J. Mol. Biol. 114: 153–168PubMedCrossRefGoogle Scholar
  119. Larizza, L., Simoni, G., Tredici, F., and De Carli, L., 1974, Griseofulvin: A potential agent of chromosomal segregation in cultured cells, Mutat. Res. 25: 123–130PubMedCrossRefGoogle Scholar
  120. Latt, S. A., 1973, Microfluorometry detection of DNA replication in human metaphase chromosomes, Proc. Natl. Acad. Sci. USA. 70: 3395–3399PubMedCrossRefGoogle Scholar
  121. Latt, S. A., 1974, Localization of sister chromatid exchanges in human chromosomes, Science 185: 74–76PubMedCrossRefGoogle Scholar
  122. Latt, S. A., Stetten, G., Jürgens, L. A., Buchanan, G. R., and Gerald, P. S., 1975, Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia, Genetics 72 (10): 4066–4070Google Scholar
  123. Laval, J., 1980, Enzymology of DNA repair, in Molecular and Cellular Aspects of Carcinogen Screening Tests, (edited by Montesano, R., Bartsch, H., and Tomatis, L.), IARC Scientific Publ., Vol. 27, pp. 55–73Google Scholar
  124. Lehmann, A. R., 1972, Postreplication repair of DNA in UV-irradiated mammalian cells, J. Mol. Biol. 66: 319–337PubMedCrossRefGoogle Scholar
  125. Leonard, A., and Lauwerys, P. R., 1980, Carcinogenicity, teratogenicity, and mutagenicity of arsenic, Mutat. Res. 75: 49–62PubMedGoogle Scholar
  126. Levan, A., Levan, G., and Mitelman, F., 1977, Chromosomes and cancer, Hereditas 86: 15–30PubMedCrossRefGoogle Scholar
  127. Lilley, D. M., and Pardon, J. F., 1979, Structure and function of chromatin, Ann. Rev. Genet., 13: 197–233PubMedCrossRefGoogle Scholar
  128. Lindahl, T., 1979, DNA glycosylases, Progr. Nucl. Acids Res. and Mol. Biol., 22: 135–192CrossRefGoogle Scholar
  129. Lindgren, V., 1981, The location of chromosome breaks in Bloom’s syndrome, Cytogenet. Cell Genet. 29: 99–106PubMedCrossRefGoogle Scholar
  130. Loeb, L. A., Weymouth, L. A., Kunkel, T. A., Gopinathan, K. P., Beckman, R. A., and Dube, D. K., 1979, Fidelity of DNA synthesis, Cold Spring Harbor Symp. Quant. Biol. 43: 921–927PubMedGoogle Scholar
  131. Lubs, H. A., and Samuelson, J., 1967, Chromosome abnormalities in lymphocytes from normal human subjects, a study of 3720 cells, Cytogenetics 6: 402–411PubMedCrossRefGoogle Scholar
  132. Madle, S., and Obe, G., 1980, Methods for analysis of the mutagenicity of indirect mutagens- carcinogens in eukaryotic cells, Hum. Genet. 56: 7–20PubMedGoogle Scholar
  133. Mark, J., Levan, G., and Mitelman, F., 1972, Identification by fluorescence of the G chromosome lost in human meningiomas, Hereditas 71: 163–168PubMedCrossRefGoogle Scholar
  134. Marsland, D., 1966, Antimitotic effects of colchicine and hydrostatic pressure, synergistic action on the cleaving eggs of Lytechinus variegatus, J. Cell Physiol. 67: 333–338PubMedCrossRefGoogle Scholar
  135. Mattei, M. G., Ayme, S., Mattei, J. F., Aurran, Y., and Giraud, F., 1979, Distribution of spontaneous chromosome breaks in man, Cytogenet. Cell Genet. 23: 95–102PubMedCrossRefGoogle Scholar
  136. McCann, J., Choi, E., Yamasaki, E., and Ames, B. N., 1975, Detection of carcinogens as mutagens in the Salmonella-microsome test: assay of 300 chemicals, Proc. Natl. Acad. Sci. USA. 72: 5135–5139PubMedCrossRefGoogle Scholar
  137. McClintock, B., 1950, The origin and behavior of mustable loci in maize, Proc. Natl. Acad. Sci. USA. 36: 344–355PubMedCrossRefGoogle Scholar
  138. Meselson, M., and Russell, K., 1977, Comparison of carcinogenic and mutagenic potency, in Origins of Human Cancer (edited by Hiatt, H. H., Watson, J. D., and Winsten, J. A. ), Cold Spring Harbor Laboratory, New York, pp. 1473–1481Google Scholar
  139. Meyer-Kuhn, E., 1978, Mitotic chiasmata and other quandriradials in mitomycin C-treated Bloom’s syndrome lymphocytes, Chromosoma 66: 287–297CrossRefGoogle Scholar
  140. Mitelman, F., and Levan, G., 1978, Clustering of aberrations to specific chromosomes in human neoplasms. III. Incidence and geographic distribution of chromosome aberrations in 856 cases, Hereditas 89: 207–232PubMedCrossRefGoogle Scholar
  141. Montesano, R., Bartsch, H., and Tomatis, L. (eds.), 1980, Long-term and short-term screening assays for carcinogens, a critical appraisal, IARC Monographs, Suppl. 2, IARC, LyonGoogle Scholar
  142. Morad, M., and Elzawahri, M., 1977, Nonrandom distribution of cyclophosphamide-induced chromosome breaks, Mutat. Res. 42: 125–130PubMedCrossRefGoogle Scholar
  143. Morad, M., Jonasson, J., and Lindsten, J., 1973, Distribution of mitomycin-C-induced breaks on human chromosomes, Hereditas 74: 273–282PubMedCrossRefGoogle Scholar
  144. Morgan, W. F., and Crossen, P. E., 1977, The frequency and distribution of sister chromatid exchanges in human chromosomes, Hum. Genet. 38: 271–278PubMedCrossRefGoogle Scholar
  145. Moutschen, J., 1979, Introduction à la toxicologic génétique, Masson, ParisGoogle Scholar
  146. Nakagome, Yasvo and Chiyo, 1976, Nonrandom distribution of exchange points inpatients with structural rearrangements, Am. J. Hum. Genet. 28: 31–41PubMedGoogle Scholar
  147. Natarajan, A. T., Obe, G., Zeeland, A. A., Palitti, F., Meijers, M., and Verdegaal-Immerzeel, A. M., 1980, Molecular mechanisms involved in the production of chromosomal aberration. II. Utilization of neurospora endonuclease for the study of aberration production by X rays in G1 and G2 stages of the cell cycle, Mutat. Res. 69: 293–305PubMedCrossRefGoogle Scholar
  148. Nielsen, J., and Rasmussen, K., 1976, Distribution of break points in reciprocal translocations in children ascertained in population studies, Hereditas 82: 73–78PubMedCrossRefGoogle Scholar
  149. Obe, G., and Luers, H., 1972, Inter- and intrachromosomal distribution of achromatic lesions and chromatic breaks in human chromosomes, Mutat. Res., 16: 337–339PubMedCrossRefGoogle Scholar
  150. Oksala, T., and Therman, E., 1974, Mitotic abnormalities and cancer, in Chromosomes and Cancer (edited by J. Eerman) John Wiley and Sons, New York, pp. 239–263Google Scholar
  151. Ostergren, G., 1951, Narcotized mitosis and the precipitation hypothesis of narcosis, in Méchanisme de la Narcose (Colloques Internationeaux du Centre Nationalde la Recherche Scientific), Vol. 26, p. 77Google Scholar
  152. Olsson, M., and Lindahl, T., 1980, Repair of alkylated DNA in E. Coli: methyl group transfer from O6-methyl guanine to a protein cysteine residue, J. Biol. Chem. 225: 10569–10571Google Scholar
  153. Pathak, S., Stock, A. D., and Lusby, A., 1975, A combination of sister chromatid differential staining and Giemsa banding, Experientia 31: 916–917PubMedCrossRefGoogle Scholar
  154. Paulson, J. R., and Laemmli, U. K., 1977, The structure of histone-depleted metaphase chromosomes, Cell 12: 817–828PubMedCrossRefGoogle Scholar
  155. Perry, P., and Evans, S., 1974, New Giemsa method for the differential staining of sister chromatids, Nature 251: 156–158PubMedCrossRefGoogle Scholar
  156. Peterson, P. A., 1960, The plae green mutable system in maize, Genetics 45: 115–126PubMedGoogle Scholar
  157. Peto, R., Roe, F. J. C., Lee, P. N., Levy, L., and Clack, J., 1975, Cancer and aging in mice and men, Br. J. Cancer 32: 441CrossRefGoogle Scholar
  158. Peto, R., 1977, Epidemiology, multistage models, and short-term mutagenicity tests, in Origins of Human Cancer (edited by Hiatt, H. H., Watson, J. D., and Winsten, J. A. ), Cold Spring Harbor Laboratory, New York, pp. 1403–1428Google Scholar
  159. Radding, C. M., 1978, Genetic recombination: strand transfer and mismatch repair, Annu. Rev. Biochem. 47: 847–880PubMedCrossRefGoogle Scholar
  160. Radman, M., 1977, On the mechanism and genetic control of mutation: an approach to carcinogenesis, Colloques Internationaux du CNRS. 256: 213–306Google Scholar
  161. Radman, M., Villani, G., Boiteux, S., Defais, M., Caillet-Fauquet, P., and Spadari, S., 1977, On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens, in Origins of Human Cancer, (edited by Hiatt, H., Watson, J. D., and Winsten, J. ), Cold Spring Harbor Laboratory, pp. 903–921Google Scholar
  162. Radman, M., Villani, G., Boiteux, S., Kinsella, A. R., Glickman, B. W., and Spadari, S., 1979, Replicational fidelity: mechanisms of mutation avoidance and mutation fixation, Cold Spring Harbor Svmp. Quant. Biol. 43: 937–946Google Scholar
  163. Radman, M., 1980, Is there SOS induction in mammalian cells? Photochem. Photobiol. 32: 823–830PubMedCrossRefGoogle Scholar
  164. Radman, M., Wagner, R. E., Glickman, B. W., and Meselson, M., 1980, DNA methylation, mismatch repair and genetic stability, in Progress in Environmental Mutagenesis, (edited by Alacevic, M. ), Elsevier, Amsterdam, pp. 121–130Google Scholar
  165. Ramel, C., 1969, Genetic effects of organic mercury compounds. I. Cytological investigations on allium roots, Hereditas 61: 208–230PubMedCrossRefGoogle Scholar
  166. Ramel, C., 1972, Genetic effects, in Mercury in the Environment, A. Toxicological Appraisal (edited by Friberg, L., and Vostel, J.) CRC Press, pp. 169–181Google Scholar
  167. Razin, A., and Riggs, A. D., 1980, DNA methylation and gene function, Science 210: 604–610PubMedCrossRefGoogle Scholar
  168. Read, J., 1959, Radiation biology of Viciafaba in relation to the general problem, Int. J. Radiol. 9: 53–65CrossRefGoogle Scholar
  169. Regan, J. D., and Setlow, R. B., 1974, Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens, Cancer Res. 34: 3318–3325PubMedGoogle Scholar
  170. Revees, B. R., and Margoles, C., 1974, Preferential location of chlorambucil induced breakage in the chromosomes of normal human lymphocytes, Mutat. Res. 26: 205–208CrossRefGoogle Scholar
  171. Revell, S. H., 1959, The accurate estimation of chromatid breakage and its relevance to a new interpretation of chromatid aberrations induced by ionizing radiation, Proc. R. Soc. London Ser. B 150: 563–589CrossRefGoogle Scholar
  172. Revell, S. H., 1963, Chromatid aberrations—the generalized theory, in Radiation-Induced Chromosome Aberrations, by S. Wolff, Columbia University Press, New York, pp. 41–72Google Scholar
  173. Revell, S. H., 1966, Evidence for a dose-squared term in the dose-response curve for real chromatid discontinuities induced by X rays and some theoretical consequences thereof, Mutat. Res. 32: 34–53Google Scholar
  174. Rinkus, S. J., and Legator, M. S., 1979, Chemical characterization of 365 known or suspected carcinogens and their correlation with mutagenic activity in the Salmonella typhimurium system, Cancer Res. 39: 3289–3318PubMedGoogle Scholar
  175. Rodman, T. C., Flehinger, B. J., and Rohlf, F. J., 1980, Metaphase chromosome associations: Colcemid distorts the pattern, Cytogenet. Cell Genet. 27: 98–110PubMedCrossRefGoogle Scholar
  176. Röhrborn, G., and Hansmann, I., 1971, Induced chromosome aberrations in unfertilized oocytes of mice, Humangenetik 13: 184–198PubMedCrossRefGoogle Scholar
  177. Roobal, A., Golle, K., and Pogron, C. I., 1977, Evidence that griseofulvin binds to a microtubule associated protein, FEBS Letters 75: 149–158CrossRefGoogle Scholar
  178. Roth, L. E., 1967, Electron microscopy of mitosis in amebae. III. Cold and urea treatments: A basis for tests of direct effects of mitotic inhibitors on microtubule formation, J. Cell Biol. 34: 47–59PubMedCrossRefGoogle Scholar
  179. Rupp, W. D., Wilde, C. E., III, Reno, D. L., and Howard-Flouders, P., 1971, Exchanges between DNA strands in UV-irradiated E. coli, J. Mol. Biol. 61: 25–44PubMedCrossRefGoogle Scholar
  180. San Roman, C., and Bobrow, M., 1973, The sites of radiation-induced breakage in human lymphocyte chromosomes, determined by quinacrine fluorescence, Mutat. Res. 18: 325–331CrossRefGoogle Scholar
  181. Sasaki, M. S., 1977, Sister chromatid exchange and chromatid interchange as possible manifestation of different DNA repair processes, Nature 269: 623–625PubMedCrossRefGoogle Scholar
  182. Sasaki, M. S., 1973, DNA repair capacity and susceptibility to chromosome breakage in xeroderma pigmentosum cells, Mutat. Res. 20: 291–293PubMedCrossRefGoogle Scholar
  183. Sathaich, V., and Venkat Reddy, P., 1973, Chromosome spreading by zinc ethylene pindithio- carbamate “zinc ciba,” Curr. Sci. 42: 143–144Google Scholar
  184. Savage, J. R. K., Bigger, T. R. L., and Watson, G. E., 1974, Location of quinacrine mustard- induced chromatid exchange points in relation to ASG bands in human chromosomes, Chromosomes Today 5: 281–291Google Scholar
  185. Savage, J. R. K., 1976, Classification and relationship of induced chromosomal structural changes, J. Med. Genet. 13: 103–122PubMedCrossRefGoogle Scholar
  186. Sawada, M., and Ishidate, M., 1978, Colchicine-like effect of diethylstilbestrol (DES) on mammalian cells in vitro, Mutat. Res. 57: 175–182CrossRefGoogle Scholar
  187. Sax, K., 1938, Chromosome aberrations induced by X rays, Genetics 23: 494–516PubMedGoogle Scholar
  188. Saxholm, H. J., and Digernes, V., 1980, Progressive loss of DNA and lowering of the chromosomal mode in chemically transformed C3 H /10T Vi cells during development of their oncogenic potential, Cancer Res. 40: 4254–4260PubMedGoogle Scholar
  189. Schaap, T., Sagi, M., and Cohen, M. M., 1980, Chromosome-specific patterns of mitomycin-C- induced rearrangements in human lymphocytes, Cytogenet. Cell Genet. 28: 240–250CrossRefGoogle Scholar
  190. Schalet, A. P., and Sankaranarayanan, 1976, Evolution and reevaluation of genetic radiation hazards in man, Mutat. Res. 35: 341–370PubMedCrossRefGoogle Scholar
  191. Scheid, W., and Traut, H., 1971, On the nature of achromatic lesions (“gaps”) induced by X rays in chromosomes of Vicia faba, Z. Naturforsch. 26B: 1384–1385Google Scholar
  192. Schnedl, W., Pumberger, W., Czaker, R., Wagenbichler, P., and Schwarzacher, M. G., 1976, Increased SCE events in the human late replicating, Hum. Genet. 32: 199–202PubMedCrossRefGoogle Scholar
  193. Schroeder, T. M., and Kurth, R., 1971, Spontaneous chromosomal breakage and high incidence of leukemia in inherited disease, Blood 37: 96–112PubMedGoogle Scholar
  194. Schroeder, T. M., and German, J., 1974, Bloom’s syndrome and Fanconi’s anemia: Demonstration of two distinctive patterns of chromosome disruption and rearrangement, Humangenetik 25: 299–306PubMedCrossRefGoogle Scholar
  195. Schubert, J., and Rieger, R., 1981, Sister chromatid exchanges and heterochromatin, Hum. Genet. 57: 119–130PubMedCrossRefGoogle Scholar
  196. Schwarzacher, H. G., 1979, V. structural differences along the chromosomes (chromosome banding) in Handbuch der Microscopischen Anatomie des Menschen: 13 Chromosomen, Springer-Verlag, Berlin, pp. 33–48Google Scholar
  197. Scott, D., and Evans, H. J., 1967, X-ray-induced aberrations in Vicia faba: changes in response during the cell cycle, Mutat. Res. 4, 579–599PubMedCrossRefGoogle Scholar
  198. Scott, D., Fox, M., and Fox, B. W., 1975, Differential induction of chromosome aberrations in mammalian cell lines, Mutat. Res. 29: 201–202PubMedGoogle Scholar
  199. Scott, D., 1980, Molecular mechanisms of chromosome structural changes, in Progress in Environmental Mutagenesis (edited by M. Alačevič ), Elsevier, Amsterdam, pp. 101–113Google Scholar
  200. Seabright, M., 1973, High-resolution studies on the pattern of induced exchanges in the human karotype, Chromosoma 40: 333–346PubMedCrossRefGoogle Scholar
  201. Shafer, D. A., 1973, Binding human chromosomes in culture with actonomicyn D., Lancet 1: 828–829PubMedCrossRefGoogle Scholar
  202. Shih, C., Shilo, B. Z., Goldfarb, M. P., Dannenberg, A., and Wienberg, R. A., 1979, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA. 76, 5714–5718PubMedCrossRefGoogle Scholar
  203. Shiraishi, Y., and Sandberg, A. A., 1977, The relationship between sister chromatid exchanges and chromosome aberrations in Bloom’s syndrome, Cytogenet. Cell Genet. 18: 13–23PubMedCrossRefGoogle Scholar
  204. Silverman, M., Zieg, J., Hilmen, M., and Simon, M., 1979, Phase variation in Salmonella: Genetic analysis of a recombinational switch, Proc. Natl. Acad. Sci. USA. 76: 391–395PubMedCrossRefGoogle Scholar
  205. Smyth, D. R., and Evans, H. J., 1976, Mapping of sister chromatid exchanges in human chromosomes using C-banding and autoradiography, Mutat. Res. 35: 139–154PubMedCrossRefGoogle Scholar
  206. Sperling, K., Wegner, R. D., Riehm, H., and Obe, G., 1975, Frequency and distribution of sister chromatid exchanges in a case of Fanconi’s anemia, Humangenetik 27: 227–230PubMedCrossRefGoogle Scholar
  207. Spriggs, A. I., 1974, Cytogenetics of cancer and precancerous states of the cervix uteri, in Chromosomes and Cancer (edited by J. German) John Wiley and Sons, New York, pp. 423–450Google Scholar
  208. Stich, H. F., and San, R. H. C., 1973, DNA repair synthesis and survival of repair deficient human cells exposed to the K-region epoxide of Benz (a) anthracene (36979), Proc. Soc. Exp. Biol. Med. 142: 155–158PubMedGoogle Scholar
  209. Stoll, CI., 1980, Nonrandom distribution of exchange points in patients with reciprocal translocations, Hum. Genet. 56: 89–93PubMedGoogle Scholar
  210. Thrasher, J. D., 1973, The effects of mercuric compounds on dividing cells, in Drugs and the Cell Cycle (edited by Zimmerman, A. E., Perdille, G. M., and Cameron, I. L. ), Academic Press, New York, pp. 25–48Google Scholar
  211. Tice, R., Chaillet, J., and Schneider, E. L., 1975, Evidence derived from sister chromatid exchanges of restricted rejoining of chromatid subunits, Nature 256: 642–644PubMedCrossRefGoogle Scholar
  212. Van Buul, P. P. W., and Natarajan, A. T., 1980, Chromsomal radiosensitivity of human leucocytes in relation to sampling time, Mutat. Res. 70: 61–69PubMedCrossRefGoogle Scholar
  213. Van de Putte, P., Cramer, S., and Giphart-Gassler, M., 1980, Invertible DNA determines host specificity of bacteriophage Mu, Nature 286: 218–222PubMedCrossRefGoogle Scholar
  214. Veatch, W., and Okada, S., 1969, Radiation-induced breaks of DNA in cultured mammalian cells, Biochem. J. 9: 330–346Google Scholar
  215. Verschaeve, L., and Susanne, C., 1978, Chromosome banding produced after mercury chloride treatment in culture, Acta Anthropogenet. 2 (4): 1–8Google Scholar
  216. Verschaeve, L., Kirsch-Volders, M., Hens, L., and Susanne, C., 1978, Chromosome distribution studies in phenyl mercury acetate exposed subjects and in age-related controls, Mutat. Res. 57: 335–347PubMedGoogle Scholar
  217. Verschaeve, L., Driesen, M., Kirsch-Volders, M., Hens, L., and Susanne, C., 1979, Chromosome distribution studies after inorganic lead exposure, Hum. Genet. 49: 147–158PubMedGoogle Scholar
  218. Vogel, F., and Schroeder, T. M., 1974, The internal order of the interphase nucleus, Humangenetik 25: 265–297PubMedCrossRefGoogle Scholar
  219. Von Koskull, H., and Aula, P., 1973, Nonrandom distribution of chromosome breaks in Fanconi’s anemia, Cytogenet. Cell Genet. 12: 423–434CrossRefGoogle Scholar
  220. Wang, R. W. J., Rebhun, L. I., and Kupchan, S. H., 1976, Antimitotic and antitubulin activity of the tumor inhibitor steganicin, J. Cell Biol. 70: 335Google Scholar
  221. Weinstein, D., Mauer, J., Katz, M., and Kazmer, S., 1973, The effects of caffeine on chromosomes of human lymphocytes: Nonrandom distribution of damage, Mutat. Res. 20: 441–443PubMedCrossRefGoogle Scholar
  222. Weinstein, I. B., 1980, Cell culture systems for studying multifactor interactions in carcinogenesis, in Mechanisms of Toxicity and Hazard Evaluation (edited by Holmstedt, B., Lauwerys, R., Mercier, M., and Roberfroid, M.) Elsevier, Amsterdam, pp. 149–164Google Scholar
  223. Wilson, L., Cresweld, K. M., and Cher, D., 1975, The mechanism of action of vinblastine. Binding of (acetyl-3H) vinblastine to embryonic chick brain tubulin and tubulin from sea urchin sperm tail outer doublet microtubules, Biochemistry 14: 5586–5592PubMedCrossRefGoogle Scholar
  224. Witkin, E. M., 1976, Ultraviolet mutagenesis and inducible DNA repair in E. coli, Bacteriol. Rev. 40: 869–907Google Scholar
  225. Wolff, S., Bodycote, J., and Painter, R. B., 1979, SCE induced in Chinese hamster cells by U V-irradiation of different stages of the cell cycle: The necessity for cells to pairs through S. Mutat. Res. 25: 73–81Google Scholar
  226. Wolff, S., Rodin, B., and Cleaver, J. E., 1977, Sister chromatid exchanges induced by mutagenic carcinogens in normal and xeroderma pigmentosum cells, Nature 265: 347–349PubMedCrossRefGoogle Scholar
  227. Wolff, S., 1978a, Chromosomal effects of mutagenic carcinogens and the nature of the lesions leading to SCE, in Mutagen-Induced Chromosome Damage in Man (edited H. J. Evans and D. C. Lloyd), Edinburgh University Press, Edinburgh, pp. 208–215Google Scholar
  228. Wolff, S., 1978b, Relation between DNA repair, chromosome aberration, and sister chromatid exchanges, in DNA Repair Mechanisms, (edited by P. C. Hanawalt, E. C. Friedberg, and C. F. Fox ), Academic Press, New York, pp. 751–760Google Scholar
  229. Wright, A. S., 1980, The role of metabolism in chemical mutagenesis and chemical carcinogenesis, Mutat. Res. 75: 215–241PubMedGoogle Scholar
  230. Wun, K. L., and Sutherland, J. C., 1977, Photoreactivating enzyme from E. coli: Appearance of new absorption on binding to vitranblet-irradiated DNA, Biochemistry 16: 921–924PubMedCrossRefGoogle Scholar
  231. Zech, L., Haglund, U., Nilsson, K., and Klein, G., 1976, Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas, Int. J. Cancer 17: 47–56PubMedCrossRefGoogle Scholar
  232. Zimmerman, F. K., 1971, Induction of mitotic gene conversion by mutagens, Mutat. Res. 11: 327–337Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. Kirsch-Volders
    • 1
  • M. Radman
    • 2
    • 3
  • P. Jeggo
    • 4
    • 5
  • L. Verschaeve
    • 1
  1. 1.Laboratorium voor AntropogenetikaV.U.B.BrusselsBelgium
  2. 2.Départment de BiologieU.L.B.OrseyFrance
  3. 3.Laboratoire de GénétiqueUniversité Paris Sud, Faculté ScienceOrseyFrance
  4. 4.Département de Biologie MoléculaireU.L.B.Mill Hill, LondonEngland
  5. 5.National Institutes of Medical Research, Department of GeneticsM.R.C.Mill Hill, LondonEngland

Personalised recommendations