Advertisement

Tumor specific antigens induced by mutagens and DNA hypomethylating agents: implications for the immunobiology of neoplasia

  • Robert S. Kerbel
  • Philip Frost
  • Douglas A. Carlow
  • Bruce E. Elliott
Part of the Cancer Treatment and Research book series (CTAR, volume 27)

Abstract

The effusive enthusiasm that characterized so much of tumor immunology research during the 1960’s and 1970’s has gradually given way to a widespread and pervasive cynicism. One could cite many reasons for this but three in particular stand out. First, the incidence of almost all types of cancer in immunodeficient humans or animals (such as athymic nude mice) appears no greater than in appropriate control groups [1, 2]. This stands in sharp contrast to what one would have predicted on the basis of immune surveillance theories of cancer. Second, clinical trials involving immunotherapy have generally provided discouragingly negative results in terms of long-term patients survival or cures. Third, the entire theoretical foundation of tumor immunology itself — the existence of strictly tumor specific antigens — has yet to be definitively proven in human neoplasia despite over 25 years of intensive world-wide efforts to unequivocally uncover their presence.

Keywords

Tumor Cell Population Tumor Specific Antigen Mouse Mastocytoma Lewis Lung Carcinoma Cell Line Immunogenic Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moller, G., Moller, E. 1976. The concept of immunological surveillance against neoplasia. Transplant. Rev. 28:3–15.PubMedGoogle Scholar
  2. 2.
    Stutman, O. 1975. Immunodepression and malignancy. Adv. Cancer Res. 22:261–422.PubMedGoogle Scholar
  3. 3.
    Foley, E.J. 1953. Antigenic properties of methylclolanthrene-induced tumours in mice of the strain of origin. Cancer Res. 13:35–37.Google Scholar
  4. 4.
    Prehn, R.T., Main, J.M. 1957. Immunity to methylcholanthrene-induced sacromas. J. Natl. Cancer Inst. 18:759–778.Google Scholar
  5. 5.
    Klein, G., Sjogren, H., Klein, E., Hellstrom, K. 1960. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res. 20:1561–1572.PubMedGoogle Scholar
  6. 6.
    Hewitt, H.B., Blake, E.R., Walder, A.S. 1976. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br. J. Cancer 33:241–259.PubMedGoogle Scholar
  7. 7.
    Baldwin, R.W., Embleton, M.J. 1969. Immunology of spontaneously arising rat mammary adenocarcinomas. Int. J. Cancer 4:430–439.PubMedGoogle Scholar
  8. 8.
    Embleton, M.J., Middle, J.G. 1981. Immune responses to naturally occurring rat sarcomas. Br. J. Cancer 43:44–52.PubMedGoogle Scholar
  9. 9.
    Hewitt, H.B. 1978. The choice of animal tumors for experimental studies of cancer therapy. Adv. in Cancer Res. 27:149–200.Google Scholar
  10. 10.
    Hewitt, H.B. 1981. Immunotherapy of cancer: an underview. Modern Medicine of Canada 35:1355–1361.Google Scholar
  11. 11.
    Hewitt, H.B. 1982. Animal tumor models and their relevance to human tumor immunology. J. of Biol. Resp. Modifiers 1:107–119.Google Scholar
  12. 12.
    Hewitt, H.B. 1979. A critical examination of the foundations of immunotherapy for cancer. Clin. Radiol. 30:361–369.PubMedGoogle Scholar
  13. 13.
    Hilgers, J., Haverman, J., Nusse, R., van Bliterswijk, W.J., Cleton, F.J., Hageman, Ph.C., van Nie, R., Calafat, J. 1975. Immunologic, virologic, and genetic aspects of mammary tumor virus-induced cell-surface antigens: presence of these antigens and the Thy 1.2 antigen on murine mammary gland and tumor cells. J. Natl. Cancer Inst. 54:1323–1333.PubMedGoogle Scholar
  14. 14.
    Nowinski, R.C., Klein, P.A. 1975. Anomalous reactions of mouse alloantisera with cultured tumor cells. IV. Cytotoxicity is caused by antibodies to leukemia viruses. J. Immunol. 115:1261–1268.PubMedGoogle Scholar
  15. 15.
    McGarrity, G.J., Vanaman, V., Sarama, J. 1984. Cytogenetic effects of mycoplasmal infection of cell cultures: a review. In Vitro 20:1–18.PubMedGoogle Scholar
  16. 16.
    Hamburger, R.N., Pious, D.A., Mills, S.E. 1963. Antigenic specificities acquired from the growth medium by cells in tissue culture. Immunology 6:439–449.PubMedGoogle Scholar
  17. 17.
    Sulit, H.L., Golub, S.H., Irie, R.F., Gupta, R.K., Grooms, G.A., Morton, D.L. 1976. Human tumor cells grown in fetal calf serum and human serum: influences on the tests for lymphocyte cytotoxicity, serum blocking and serum arming effects. Int. J. Cancer 17:461–468.PubMedGoogle Scholar
  18. 18.
    Cairns, J., Logan, J. 1983. Step by step into carcinogenesis. Nature 18:582–583.Google Scholar
  19. 19.
    Lake, P., Mitchinson, N.A. 1977. Regulatory mechanisms in the immune response to cell-surface antigens. Cold Spring Harbour Symp. Quant. Biol. 41:589–595.Google Scholar
  20. 20.
    Lake, P., Mitchinson, N.A. 1976. Associative control of the immune response to cell surface antigens. Immunological Communications 5:795–805.PubMedGoogle Scholar
  21. 21.
    Shen, F.W., Hwang, S.M., Boyse, E.A. 1978. Adoptive immunization in the production of Lyt and other alloantisera. Immunogenetics 6:389–395.Google Scholar
  22. 22.
    Kobayashi, H. 1979. Viral xenogenization of intact tumor cells. Adv. in Cancer Res. 30:279–297.Google Scholar
  23. 23.
    Martin, W.J., Wunderlich, J.R., Fletcher, F., Inman, J.K. 1971. Enhanced immunogenicity of chemically-coated syngeneic tumor cells. Proc. Natl. Acad. Sci. USA 68:469–471.PubMedGoogle Scholar
  24. 24.
    Toffaletti, D.L., Darrow, T.L., Scott, D.W. 1983. Augmentation of sungeneic tumor-specific immunity by semiallogeneic cell hybrids. J. of Immunol. 130:2982–2986.Google Scholar
  25. 25.
    Kawashima, K., Nagura, E., Watanabe, E., Mizoguchi, K., Saga, S., Isobe, K., Nakashima, I., Yamada, K., Oikawa, T., Kojima, K. 1983. High-grade tumor-specific immunity induced by L1210 leukemia variants obtained from the culture of L1210 cells fused with Lesch-nyhan fibroblasts. Int. J. Cancer 32:507–514.PubMedGoogle Scholar
  26. 26.
    Yefenof, E., Goldapfel, M., Ber, R. 1982. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid. J. Natl. Cancer Inst. 68:841–849.PubMedGoogle Scholar
  27. 27.
    O’Donnell, R.W., Horan, P.K., Minken, T.J., Chuang, C., Henshaw, E.C., McCune, C.S. 1984. Antitumor immunity induced by hybrid tumor cells: comparison between hybrids and parental tumor. Cancer Res. 44:487–492.PubMedGoogle Scholar
  28. 28.
    Kerbel, R.S., Frost, P. 1982. Heritable alterations in tumor-cell immunogenicty. Immunology Today 3:34–35.Google Scholar
  29. 29.
    Frost, P., Kerbel, R.S. 1983. On a possible epigenetic mechanism(s) of tumor cell heterogeneity. Cancer Metastasis Reviews 2:375–378.PubMedGoogle Scholar
  30. 30.
    Kobayashi, H., Sendo, F., Kaji, H., Shirai, T., Saito, H., Takeichi, N., Hosokawa, M., Kodama, T. 1970. Inhibition of transplanted rat tumors by immunization with identical tumor cells infected with Friend virus. J. Natl. Cancer Inst. 44:11–19.PubMedGoogle Scholar
  31. 31.
    Kenne, J.A., Foreman, J. 1982. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J. Exp. Med. 155:768–782.Google Scholar
  32. 32.
    Bonmassar, E., Bonmassar, A., Vadlamudi, S., Goldin, A. 1970. Immunological alteration of leukemia cells in vivo after treatment with an antitumor drug. Proc. Natl. Acad. Sci. 66:1089–1095.PubMedGoogle Scholar
  33. 33.
    Nicolin, A., Bini, A., Coronetti, E. 1974. Cellular immune response to a drug-treated L5178Y lymphoma subline. Nature 251:654–655.PubMedGoogle Scholar
  34. 34.
    Bonmassar, A., Frait, L., Fioretti, M.C., Ramani, L., Giampietri, A., Goldin, A. 1979. Changes of the immunogenic properties of K36 lymphoma treated in vivo with 5 (3,3dimethyl-1-triazeno) imidazole-4-carboxamide (DTIC). Europ. J. Cancer 15:933–939.Google Scholar
  35. 35.
    Giampietri, A., Bonmassar, A., Puccetti, P., Circolo, A., Goldin, A., Bonmassar, E. 1981. Drug-mediated increase of tumor immunogenicity in vivo for a new approach to experimental cancer immunotherapy. Cancer Res. 41:681–687.PubMedGoogle Scholar
  36. 36.
    Campanile, F., Houchens, D.P., Gaston, M., Goldin, A., Bonmassar, E. 1975. Brief communication: increased immunogenicity of two lymphoma lines after drug treatment of athymic (nude) mice. J. Natl. Cancer Inst. 55:207–209.PubMedGoogle Scholar
  37. 37.
    Bonmassar, E., Testorelli, C., Franco, P., Goldin, A., Cudkowicz, G. 1975. Changes of the immunogenic properties of a radiation-induced mouse lymphoma following treatment with antitumor drugs. Cancer Res. 35: 1957–1962.PubMedGoogle Scholar
  38. 38.
    Taramelli, D., Romani, L., Bonmassar, A., Goldin, A., Fioretti, M.C. 1981. Expression of normal histocompatibility antigens in murine lymphomas treated with 5-(3,3’-dimethyl1-triazeno)-imidazole-4-carboxamide (DTIC) in vivo. Europ. J. Cancer 17:411–420.Google Scholar
  39. 39.
    Romani, L., Fioretti, M.C., Bonmassar, E. 1979, In vitro generation of primary cytotoxic lymphocytes against L5178Y leukemia antigenically altered by 5-(3,3’-dimethyl-l-triazeno)-imidazole-4-carboxamide in vivo. Transplantation 28:218–222.PubMedGoogle Scholar
  40. 40.
    Nicolin, A., Veronese, F., Marelli, O., Goldin, A. 1980. Immunological resistance to L1210 leukemia induced by viable L1210/DTIC cells. Cancer Immunol. Immunother. 9:43–48.Google Scholar
  41. 41.
    Bonmassar, E., Bonmassar, A., Vadlamudi, S., Goldin, A. 1972. Antigenic changes of L1210 leukemia in mice treated with 5-(3,3-dimethyl-l-triazeno)imidazole-4-carboxamide. Cancer Res. 32:1446–1450.PubMedGoogle Scholar
  42. 42.
    Fioretti, M.C., Bianchi, R., Romani, L., Bonmassar, E. 1983. Drug-induced immunogenic changes of murine leukemia cells: dissociation of onset of resistance and emergence of novel immunogenicity. J. Natl. Cancer Inst. 71:1247–1251.PubMedGoogle Scholar
  43. 43.
    Giampietri, A., Fioretti, M.C., Goldin, A., Bonmassar, E. 1980. Drug-mediated antigenic changes in murine leukemia cells: antagonistic effects of quinacrine, an antimutagenic compound. J. Natl. Cancer Inst. 64:297–301.PubMedGoogle Scholar
  44. 44.
    Contessa, A.R., Giammietri, A., Bonmassar, A., Goldin, A. 1979. Increased immunogenicity of L1210 leukemia following short-term exposure to 5(3,3’-dimethyl-l-triazeno)-imidazole-4-carboxamide (DTIC) in vivo or in vitro. Cancer Immunol. Immunother. 7:71–76.Google Scholar
  45. 45.
    Contessa, A.R., Bonmassar, A., Giampietri, A., Circolo, A., Goldin, A., Fioretti, M.C. 1981. In vitro generation of a highly immunogenic subline of L1210 leukemia following exposure to 5-(3,3’-dimethyl-l-triazeno)imicazole-4-carboxamide. Cancer Res. 41:2476–2482.PubMedGoogle Scholar
  46. 46.
    Mihich, E. 1969. Modification of tumor regression by immunologic means. Cancer Res. 29:2345–2350.PubMedGoogle Scholar
  47. 47.
    Fuji, H., Mihich, E. 1975. Selection for high immunogenicity in drug-resistant sublines of murine lymphomas demonstated by plaque assay. Cancer Res. 35:946–952.PubMedGoogle Scholar
  48. 48.
    Fuji, H., Mihich, E., Pressman, D. 1977. Differential tumor immunogenicity of L1210 and its sublines. I. Effect of an increased antigen density on tumor cell surfaces on primary B cell responses in vitro. J. Immunol. 3:983–986.Google Scholar
  49. 49.
    Scmid, F.A., Hutchison, D.J. 1973. Decrease in oncogenic potential of L1210 leukemia by triazenes. Cancer Res. 33:2161–2165.Google Scholar
  50. 50.
    Tsukagoshi, S., Hashimoto, Y. 1973. Increased immunosensitivity in nitrogen mustard-resistant Yoshida sarcoma. Cancer Res. 33: 1038–1042.PubMedGoogle Scholar
  51. 51.
    Boon, T. 1983. Antigenic tumor cell variants obtained with mutagens. Adv. Cancer Res. 39:121–151.PubMedGoogle Scholar
  52. 52.
    Mondai, S., Embleton, M.J., Marquardt, H., Heidelberger, C. 1971. Production of variants of decreased malignancy and antigenicity from clones transformed in vitro by methylcholanthrene. Int. J. Cancer 8:410–420.Google Scholar
  53. 53.
    Van Pel, A., Georlette, M., Boon, T. 1979. Tumor cell variants obtained by mutagenesis of a Lewis lung carcinoma cell line: immune rejection by syngeneic mice. Proc. Natl. Acad. Sci. USA 76:5282–5285.PubMedGoogle Scholar
  54. 54.
    Boon, T., Kellerman, O. 1977. Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma line. Proc. Natl. Acad. Sci. USA 74:272–275.PubMedGoogle Scholar
  55. 55.
    Uyttenhove, C., Van Snick, J., Boon, T. 1980. Immunogenic variants obtained by muta-genesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J. Exp. Med. 152:1175–1183.PubMedGoogle Scholar
  56. 56.
    Van Pel, A., Boon, T. 1982. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc. Natl. Acad. Sci. USA 79:4718–4722.PubMedGoogle Scholar
  57. 57.
    Van Pel, A., Vessiere, F., Boon, T. 1983. Protection against two spontaneous mouse leukemias conferred by immunogenic variants obtained by mutagenesis. J. Exp. Med. 157: 1992–2001.PubMedGoogle Scholar
  58. 58.
    Boon, T., Van Pel, A. 1978. Teratocarcinoma cell variants rejected by syngeneic mice: protection of mice immunized with these variants against other variants and against the original malignant cell line. Proc. Natl. Acad. Sci. USA 75:1519–1523.PubMedGoogle Scholar
  59. 59.
    Boon, T., Van Snick, J., Van Pel, A., Uyttenhove, C., Marchand, M. 1980. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis. J. Exp. Med. 152:1184–1193.PubMedGoogle Scholar
  60. 60.
    Maryanski, J.L., Van Snick, J., Cerottini, J.-C., Boon, T. 1982. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. III. Clonal analysis of the syngeneic cytolytic T lymphocyte response. Eur. J. Immunol. 12:401–406.PubMedGoogle Scholar
  61. 61.
    Maryanaski, J.L., Marchand, M., Uyttenhove, C., Boon, T. 1983. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. VI. Occasional escape from host rejection due to antigen-loss secondary variants. Int. J. Cancer 31:119–123.Google Scholar
  62. 62.
    Maryanski, J.L., Boon, T. 1982. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. IV. Analysis of variant-specific antigens by selection of antigen-loss variants with cytolytic T cell clones. Eur. J. Immunol. 12:406–412.PubMedGoogle Scholar
  63. 63.
    Georlette, M., Boon, T. 1981. Immunogenic cell variants of a mouse teratocarcinoma confer a protection against the original non-immunogenic transplantable tumor. Eur. J. Cancer Clin. Oncol. 17:1083–1087.PubMedGoogle Scholar
  64. 64.
    Frost, P., Kerbel, R.S., Bauer, E., Tartamella-Biondo, R., Cefalu, W. 1983. Mutagen treatment as a means for selecting immunogenic variants from otherwise poorly immunogenic malignant murine tumors. Cancer Res. 43:125–132.PubMedGoogle Scholar
  65. 65.
    Carlow, D.A., Kerbel, R.S., Feltis, J.T., Elliott, B.E. 1985. Enhanced expression of class I MHC (DK) gene products on immunogenic variants of a spontaneous murine carcinoma. J. Natl. Cancer Inst. 75:291–301.PubMedGoogle Scholar
  66. 66.
    Zbar, B., Sukumar, S., Tanio, Y., Terata, N., Hovis, J. 1984. Antigenic variants isolated froma mutagen-treated Guinea pig fibrosarcoma. Cancer Res. 44:5079–5085.PubMedGoogle Scholar
  67. 67.
    Peppoloni, S., Herberman, R., Gorelik, E. 1984. Induction of highly immunogenic variants of 3LL tumor by UV irradiation.Google Scholar
  68. 68.
    Kerbel, R.S. 1979. Immunologic studies of membrane mutants of a highly metastaic murine tumor. Am. J. Pathol. 97:609–622.PubMedGoogle Scholar
  69. 69.
    Larizza, L., Schirrmacher, V., Stohr, M., Pfluger, E., Dzarlieva, R. 1984. inheritance of immunogenicity and metastatic potential in murine cell hybrids from the T-lymphoma ESb08 and normal spleen lymphocytes. J. Natl. Cancer Inst. 72: 1371–1381.PubMedGoogle Scholar
  70. 70.
    Frost, P., Liteplo, R.G., Donaghue, T.P., Kerbel, R.S. 1984. Selection of strongly immu ogenic “tum- ” variants from tumors at high frequency using 5-azacytidine. J. Exp. Med. 159:1491–1501.PubMedGoogle Scholar
  71. 71.
    Marchand, M., Caspar, P., Boon, T. 1983. Increased frequency of immunogenic variants obtained by repeated mutagen treatment of mouse mastocytoma P815. Eur. J. Cancer Clin. Oncol. 19:1529–1537.PubMedGoogle Scholar
  72. 72.
    Schmike, R.T. 1984. Gene amplification, drug resistance, and cancer. Cancer Res. 44:1735–1742.Google Scholar
  73. 73.
    Jones, P.A., Taylor, S.M. 1980. Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93.PubMedGoogle Scholar
  74. 74.
    Landolph, J.R., Jones, P.A. 1982. Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T1/2 clone 8 and V79 cells. Cancer Res. 42:817–823.PubMedGoogle Scholar
  75. 75.
    Bouck, N., Kokkinakis, D., Ostrowsky, J. 1984. Induction of a step in carcinogenesis that is normally associated with mutagenesis by nonmutagenic concentrations of 5-azacytidine. Molec. & Cell. Biol. 4:1231–1237.Google Scholar
  76. 76.
    Harris, M. 1982. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell 29:483–492.PubMedGoogle Scholar
  77. 77.
    Gasson, J.C., Ryden, T., Bourgeois, S. 1983. Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line. Nature 302:621–623.PubMedGoogle Scholar
  78. 78.
    Tennant, R.W., Otten, J.A., Myer, F.E., Rascati, R.J. 1982. Induction of retrovirus gene expression in mouse cells by some chemical mutagens. Cancer Res. 42:3050–3055.PubMedGoogle Scholar
  79. 79.
    Worton, R.G., Grant, S.G., Duff, C. 1984. In: Gene Transfer and Cancer (Pearson, M.L., Sternberg, N.L., eds.) Raven Press, N.Y. pp. 265–272.Google Scholar
  80. 80.
    Kerbel, R.S., Frost, P. Liteplo, R., Carlow, D.A., Elliott, B.E. 1984. Possible epigenetic mechanisms of tumor progression: induction of high-frequency heritable but phenotypically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J. Cell. Physiol. Suppl. 3:87–97.PubMedGoogle Scholar
  81. 81.
    Razin, A.D., Riggs, A.D. 1980. DNA methylation and gene function. Science 70:604–610.Google Scholar
  82. 82.
    Riggs, A.D., Jones, P.A. 1983. 5-methyl-cytosine gene regulation, and cancer. Adv. Cancer Res. 40:1–30.PubMedGoogle Scholar
  83. 83.
    Ehrlich, M., Wang, R.V.H. 1981. 5-methyl-cytosine eukaryotic DNA. Science 212: 1350–1357.PubMedGoogle Scholar
  84. 84.
    Doerfler, W. 1983. DNA methylation and gene activity. Ann. Rev. Bioch. 52:93–124.Google Scholar
  85. 85.
    Razin, A., Szyf, M. 1984. DNA methylation patterns: formation and function. Biochemica & Biophysica Acta 782:331–342.Google Scholar
  86. 86.
    Harrison, J.J., Anisowicz, A., Gadi, I.K., Raffeld, M., Sager, R. 1983. Azacytidine-induced tumorigenesis of CHEF/18 cells: correlated DNA methylation and chromosome changes. Proc. Natl. Acad. Sci. USA 80:6606–6610.PubMedGoogle Scholar
  87. 87.
    Trainer, D., Kline, T., Mallon, F., Greig, R., Poste, G. 1984. The effect of agents altering DNA methylation on the organ colonization and metastatic behavior of B16 melanoma cells. Cancer Res. - submitted.Google Scholar
  88. 88.
    Olsson, L., Forchhammer, J. 1984. Induction of the metastatic phenotype in a mouse tumor model by 5-azacytidine, and characterization of an antigen associated with metastatic activity. Proc. Natl. Acad. Sci. USA 81:3389–3393.PubMedGoogle Scholar
  89. 89.
    Walker, C., Ranney, D.F., Shay, J.W. 1984. 5-azacytidine-induced uncoupling of differentiation and tumorigenicity in a murine cell line. J. Natl. Cancer Inst. 73:877–885.PubMedGoogle Scholar
  90. 90.
    Weissman, B.E., Stanbridge, E.J. 1983. Complementation of the tumorigenic phenotype in human cell hybrids. J. Natl. Cancer Inst. 70:667–672.PubMedGoogle Scholar
  91. 91.
    Robertson, M. 1983. Oncogenes and mutistep carcinogenesis. Brit. Med. J. 287:1084–1086.Google Scholar
  92. 92.
    Kerbel, R.S., Dennis, J., Lagarde, A., Frost, P. 1982. Tumor progression in metastasis: an experimental approach using lectin resistant tumor variants. Cancer Metastasis Rev. 1:99–140.PubMedGoogle Scholar
  93. 93.
    Hanna, N., Schneider, M. 1983. Enhancement of tumor metastasis and suppression of natural killer cell activity by ß-estradiol treatment. J. Immunol. 130:974–980.PubMedGoogle Scholar
  94. 94.
    Haliotis, T., Dexter, D., and Roder, J.C. 1985. Low resistance to spontaneously arising tumors in natural killer cell deficient beige mutant mice. J. Natl. Cancer Inst. - in press.Google Scholar
  95. 95.
    Urban, J.L., Schreiber, H. 1983. Selection of macrophage-resistant progressor tumor variants by the normal host: requirement for concomitant T cell-mediated immunity. J. Exp. Med. 157:642–656.PubMedGoogle Scholar
  96. 96.
    Koprowski, H., Herlyn, D., Lubeck, M., Defrertas, E., Sears, H.F. Human anti-idiotype antibodies in cancer patients: is the modulation of the immune response beneficial for the patient? Proc. Natl. Acad. Sci. USA 81:216–219.Google Scholar
  97. 97.
    Chow, D.A. 1984. Tumor selection in vivo for reduced sensitivity to natural resistance and natural antibodies. J. Natl. Cancer Inst. 72:339–346.PubMedGoogle Scholar
  98. 98.
    Chow, D.A. 1984. Variant generation and selection: an in vitro model of tumor progression. Int. J. Cancer 33:541–545.PubMedGoogle Scholar
  99. 99.
    Ahrland-Richter, L., Klein, E., Merino, F. 1982. Role of H-2 antigens in the host response against methylcholanthrene induced tumors. Immunogenetics 15:53–62.Google Scholar
  100. 100.
    Kripkie, M.L. 1981. Immunologic mechanisms in UV radiation carcinogenesis. Adv. Cancer Res. 34:69–106.Google Scholar
  101. 101.
    Brunner, K.T., Weiss, A., MacDonald, H.R., Cerottini, J.-C. 1982. Cytolytic T lymphocyte clones recognizing murine sarcoma virus induced tumor antigens. In: Isolation, Characterization and Utilization of T Lymphocyte Clones (Fathman, C., Fitch, F., eds.) Academic Press, N.Y. pp. 298–313.Google Scholar
  102. 102.
    Gidlund, M., Orn, A., Wigzell, H., Senik, A., Gresser, I. 1978. Enhanced NK cell activity in mice injected with interferon inducers. Nature 273:759–761.PubMedGoogle Scholar
  103. 103.
    Nagy, Z.A., Baxevanis, C.N., Ishii, N., Klein, J. 1981. Ia antigens as restriction molecules in Ir-gene controlled T cell proliferation. Immunol. Rev. 60:59–83.PubMedGoogle Scholar
  104. 104.
    North, R.J. 1982. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 55:1063–1074.Google Scholar
  105. 105.
    Dennis, J.W., Laferté, S., Man, M.S., Elliott, B.E., Kerbel, R.S. 1984. Adoptive immune therapy in mice bearing poorly immunogenic metastases using T lymphocytes stimulated against highly immunogenic mutant sublines. Int. J. Cancer - 34:709–716.PubMedGoogle Scholar
  106. 106.
    Rosenberg, S.A. 1982. Potential use of expanded T lymphoid-cells and T cell clones for the immunotherapy of cancer. In: Isolation, Characterization and Utilization of T Lymphocyte Clones (Fathman, G.G., Fitch, F.W. eds.) Academic Press, N.Y. pp. 453–494.Google Scholar
  107. 107.
    Fujiwara, H., Fukuzawa, M., Yoshioka, T., Nakajima, H., Hamaska, T. 1984. The role of tumor specific Lyt-1+ 2- T cells in eradicating tumor cells in vivo. J. Immunol. 133: 1671–1676.PubMedGoogle Scholar
  108. 108.
    Kelso, A., MacDonald, H.R. 1982. Precursor frequency analysis of lymphokine-secreting alloreactive T lymphocytes. Dissociation of subsets producing interleukin-2, macrophage activating factor, and granulocyte-macrophage colony stimulating factor on the basis of Lyt-2 phenotype. J. Exp. Med. 156: 1366–1379.PubMedGoogle Scholar
  109. 109.
    Krammer, P.H., Marcucci, F., Waller, M., Kirchner, H. 1982. Heterogeneity of soluble T cell products. I. Frequency and correlation analysis of cytotoxic and immune interferon (IFN-y) producing spleen cells in mouse. Eur. J. Immunol. 12:200–204.PubMedGoogle Scholar
  110. 110.
    Rosenstein, M., Rosenberg, S.A. 1984, Generation of lytic and proliferative lymphoid clones to syngeneic tumors: in vitro and in vivo studies. J. Natl. Cancer Inst. 72:1161–1165.PubMedGoogle Scholar
  111. 111.
    Klein, J., Baxevanis, C., Nagy, Z. 1981. The traditional and a new version of the mouse H-2 complex. Nature 291:455–460.PubMedGoogle Scholar
  112. 112.
    VanSnick, J., Maryanski, J., Van Pel, A., Parmiani, G., Boon, T. 1982. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. V. H-2 associativity of variant-specific antigens. Europ. J. Immunol. 12:905–908.Google Scholar
  113. 113.
    Pilarski, L., Vergidis, D. 1982. Cytotoxic T cell response to minor histocompatibility antigens: apparent lack of H-2 reduction in killers stimulated by membrane fragments. J. Exp. Med. 156:217–229.PubMedGoogle Scholar
  114. 114.
    Doherty, P.C., Korngold, R., Schwartz, D.H., Bennick, J R. 1981. Development and loss of virus specific thymic competence in bone marrow radiation chimeras and normal mice. Immunol. Rev. 58:37–72.PubMedGoogle Scholar
  115. 115.
    Bernards, R., Schrier, P.I., Houwelling, A., Bos, J.L., vander Eb, A.J., Lelief, C.J.M. 1983. Tumorigenicity of cells transformed by adenovirus type 2 by evasion of T cell immunity. Nature 305:776–779.PubMedGoogle Scholar
  116. 116.
    Binz, H., Fenner, M., Frei, D., Wigzell, H. 1983. Two independent receptors allow sensitive target lysis by T cell clones. J. Exp. Med. 157:1252–1260.PubMedGoogle Scholar
  117. 117.
    Natali, P.G., Cavaliere, R., Bigotti, A, Nicotra, M.R., Russo, C. et al. 1983. Antigenic heterogeneity of surgically removed primary and autologous metastatic human melanoma lesions. J. Immunol. 130:1462–1466.PubMedGoogle Scholar
  118. 118.
    Nowell, P.C. 1976. The clonal evolution of tumor cell populations. Science 194:23–28.PubMedGoogle Scholar
  119. 119.
    Natali, P.G., Giacomini, P., Bigotti, A., Imai, K., Nicotra, M.R., Ng, A.K., Ferrone, S. 1983. Heterogeneity in the expression of HLA and tumor-associated antigens by surgically removed and cultured breast carcinoma cells. Cancer Res. 43:660–668.PubMedGoogle Scholar
  120. 120.
    Whitwell, H.L., Hughes, H.P.A., Moore, M., Ahmed, A. 1984. Expression of major histocompatibility antigens and leucocyte infiltration in benign and malignant human breast disease. Br. J. Cancer 49:161–172.PubMedGoogle Scholar
  121. 121.
    Rowe, D.J., Beverley, P. 1984. Characterization of breast cancer infiltrates using monoclonal antibodies to human leucocyte antigens. Br. J. Cancer 49:161–172.Google Scholar
  122. 122.
    Fleming, K.A., McMichael, A., Morton, J.A., Wood, J., McGee, J.D. 1981. Distribution of HLA class I antigens in normal human tissue and in mammary carcinoma. J. Clin. Path. 34:779–784.PubMedGoogle Scholar
  123. 123.
    Weiss, M.A., Michael, J.G., Resce, A.J., Dipersio, L. 1981. Heterogeneity of ß-2-microglobulin in human breast carcinoma. Lab. Invest. 45:46–57.PubMedGoogle Scholar
  124. 124.
    Gatter, K.C., Abdulaziz, Z., Beverley, P. et al. 1982. Use of monoclonal antibodies for the histopathological diagnosis of human malignancy. J. Clin. Path. 35:1253–1267.PubMedGoogle Scholar
  125. 125.
    Turbitt, M.L., Mackie, R.M. 1981. Loss of ß-2 microglobulin from the cell surface of cutaneous malignant and premalignant lesions. Am. J. Derm. 104:507–513.Google Scholar
  126. 126.
    Holden, C.A., Sanderson, A.R., MacDonald, D.M. 1983. Absence of human leukocyte antigen molecules in skin tumors and some cutaneous appendages. J. Am. Acad. Derm. 9:867–871.PubMedGoogle Scholar
  127. 127.
    Natali, P.G., Viora, M., Nictoin, M.R. et al. 1983. Antigenic heterogeneity of skin tumors of nonmelanocyte origin: analysis with monoclonal antibodies to tumor associated antigens and histocompatibility antigens. J. Natl. Cancer Inst. 71:439–447.PubMedGoogle Scholar
  128. 128.
    Natali, P.G., ReMartino, C., Quaranta, V., Bigotti, A., Pellegrino, M.A., Ferrone, S. 1981. Changes in Ia-like antigen expression on malignant cells. Immunogenetics 12:409–413.PubMedGoogle Scholar
  129. 129.
    Sanderson, A.R., Beverley, P.C.L. 1983. Interferon, 13–2 microglobulin, and immunoselection in the pathway to malignancy. Immunology Today 4:211–213.Google Scholar
  130. 130.
    VanPel, A., Georlette, M., Boon, T. 1979. Tumor cell variants obtained by mutagenesis of a Lewis lung carcinoma cell line: immune rejection by syngeneic mice. Proc. Natl. Sci. 76:5282–5285.Google Scholar
  131. 131.
    Maryanski, J.L., Szpirer, C., Boon, T. 1983. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. VII. Dominant expression of variant antigens in somatic cell hybrids. Somatic Cell Genetics 9:345–357.PubMedGoogle Scholar
  132. 132.
    Worzel, R.D., Phillips, C., Schreiber, H. 1983. Multiple tumor specific antigens expressed on a single tumour cell. Nature 304:165–167.Google Scholar
  133. 133.
    Horton, M., O’Brien, H., Takei, F. 1981. Isolation and characterization of regulatory variants for the expression of Ly-6 gene complex antigens. In: Mechanisms of Lymphocyte Activation (Resch, K., Kirchner, H. eds.) Elsevier, North Holland. pp. 260–263.Google Scholar
  134. 134.
    Mukherji, B., MacAlister, T. 1983. Clonal analysis of cytotoxic T cell response against human melanoma. J. Exp. med. 158:240–245.PubMedGoogle Scholar
  135. 135.
    Bailey, D.W. 1982. How pure are inbred strains of mice? Immunology Today 3:210–214.Google Scholar
  136. 136.
    Dakuabus, T., Ahrlund-Richter, L., Merino, F., Klein, E., Klein, G. 1981. Reduced humoral and cellular cytotoxic sensitivity in major histocompatibility variants of the YAC lymphoma. Immunogenetics 12:371–380.Google Scholar
  137. 137.
    Rosloniec, E.F., Kuhn, M.H., Genyea, C.A., Reed, A.H., Jennings, J.J. et al. 1984. Aggressiveness of SJL/J lymphomas correlates with absence of H-2D antigens. J. Immunol. 132:945–952.PubMedGoogle Scholar
  138. 138.
    Meruelo, D. 1979. A role for elevated H-2 antigen expression in resistance to neoplasia caused by radiation-induced leukemia virus. J. Exp. Med. 149:898–909.PubMedGoogle Scholar
  139. 139.
    Plata, F., Tilkin, A.-F., Levy, J.-P., Lilly, F. 1981. Quantitative variations in the expression of H-2 antigens on murine leukemia virus-induced tumor cells can affect pattern of H-2 restricted tumor specific CTL. J. Exp. Med. 154:1795–1810.PubMedGoogle Scholar
  140. 140.
    Festenstein, H., Schmidt, W., 1981. Variation in MHC antigenic profiles of tumor cells and its biological effects. Immunol. Rev. 60:85–127.PubMedGoogle Scholar
  141. 141.
    Codington, J.F., Das, H.R., Dalianis, T., Klein, G., Miller, S.C., Silber, C et al. 1983. Cell surface characteristics of an allotransplantable TA3 ascites subline resulting from a process of immunoselection. Cancer Res. 43:4373–4381.PubMedGoogle Scholar
  142. 142.
    Maher, L.J., Dove, W.F. 1984. Overt expression of H-2 serotypes on EC cells is not necessary for host rejection. Immunogenetics 19:343–347.PubMedGoogle Scholar
  143. 143.
    Schatman, M.L., Ostrand-Rosenberg, S. 1984. H-2 antigen induction and cessation of DNA synthesis in a murine teratocarcinoma are requisite for tumor rejection. Fed. Proc. 42: Abstract # 1212, p. 1624.Google Scholar
  144. 144.
    Gooding, L.R. 1982. Characterization of a progressive tumor from C3H fibroblasts transformed in vitro with SV40 virus. Immunoresistance in vivo correlates with phenotypic loss of H-2KK. J. Immunol. 129:1306–1312.PubMedGoogle Scholar
  145. 145.
    Haywood, G.R., McKhann, C.F. 1971. Antigenic specificities of murine sarcomas. Reciprocal relationship between H-2 antigen and tumor specific immunogenicity. J. Exp. Med. 133:1171–1187.PubMedGoogle Scholar
  146. 146.
    Brickell, P.M., Latchman, D.S., Murphy, D., Willison, K., Rigby, P.W.J. 1983. Activation of a Qa/T1a class I major histocompatibility antigen gene is a general feature of oncogenesis. Nature 306:756–760.PubMedGoogle Scholar
  147. 147.
    Klein, J. 1975. Biology of the Mouse Histocompatibility Complex. Springer Verlag, N.Y. pp. 45–81.Google Scholar
  148. 148.
    Holtkamp, B., Fischer Lindahl, K., Segall, M., Rajewsky, K. 1979. Spontaneous loss and subsequent stimulation of H-2 expression in clones of a heterozygous lymphoma line. Immunogenetics 9:405–421.Google Scholar
  149. 149.
    Cowing, C., Chapdelaine, J.M. 1983. T cells discriminate between la antigens expressed on allogeneic accessory cells and B cells: A potential function for carbohydrate side chains on Ia molecules. Proc. Natl. Acad. Sci USA 80:6000–6004.PubMedGoogle Scholar
  150. 150.
    Berent, M., North, R. 1980. T cell mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J. Exp. Med. 151:69–80.Google Scholar
  151. 151.
    Pilarski, L.M. 1977. A requirement for antigen-specific helper T cells in the generation of cytoxic T cells from thymocyte precursors. J. Exp. Med. 145:709–725.PubMedGoogle Scholar
  152. 152.
    Rosenthal, A., Wright, S., Cedar, H., Flavell, R., Grosveld, F. 1984. Regulated expression of an introduced MHC H-2KK gene in murine embryonal carcinoma cells. Nature 310:415–418.PubMedGoogle Scholar
  153. 153.
    Rao, A., Faas, S.J., Cantor, H. 1984. Activation specificity of arsonate-reactive T cell clones. Structural requirement for hapten recognition and comparison with monoclonal antibodies. J. Exp. Med. 159:479–494.PubMedGoogle Scholar
  154. 154.
    Gramkouski, S.H., Heagy, W., Sanchez-Madrid, F., Springer, T.A., Martz, E. 1983. Blocking of CTL-mediated killing by monoclonal antibodies to LFA-1 and LYT-2,3. I. Increased susceptibility to blocking after papain treatment of target cells. J. Immunol. 130:25462451.Google Scholar
  155. 155.
    Herrmann, S.H., Mescher, M.F. 1981. Secondary cytolytic T lymphocyte stimulation by purified H-2KK in liposomes. Proc. Natl. Acad. Sci. USA 78:2488–2492.PubMedGoogle Scholar
  156. 156.
    Singer, A., Kruisbeek, A.M., Andrysiak, P.M. 1984. T cell-accessory cell interactions that initiate allospecific cytotoxic T lymphocyte responses: existence of both Ia restricted and Ia-unrestricted cellular interaction pathways. J. Immunol. 132:2199–2209.PubMedGoogle Scholar
  157. 157.
    Kruisbeek, A.M., Andrysiak, P.M., Singer, A. 1983. Selfrecognition of accessory cell la determinants is required for the in vitro generation of hapten-specific cytotoxic T lymphocyte response. J. Immunol. 131:1650–1655.PubMedGoogle Scholar
  158. 158.
    Glimcher, L.G., Kim, K.J., Green, I., Paul, W. 1982. Ia antigen bearing tumor cell lines can present protein and alloantigen in a MHC restricted fashion to antigen reactive T cells. J. Exp. Med. 155:445–459.PubMedGoogle Scholar
  159. 159.
    Wallich, R., Bulbuc, N., Hammerling, G.J., Katzav, S., Segal, S., Feldman, M. 1985. Nature 315:301–305.PubMedGoogle Scholar
  160. 160.
    Hui, K., Groxveld, F., Festenstein, H. 1984. Rejection of transplantable AKR leukemia cells following MHC DNA-mediated cell transformation. Nature 311:750–752.PubMedGoogle Scholar
  161. 161.
    Natali, P.G., Bigotti, A., Nicotra, M.R., Viora, M., Manfredi, D., Ferrone, S. 1984. Distribution of human class I (HLA-A, B, C) histocompatibility antigens in normal and malignant tissues of nonlymphoid origin. Cancer Res. 44:4679–4687.PubMedGoogle Scholar
  162. 162.
    Powell, L.D., Bause, E., Legler, G., Molyneux, R.J., Hart, G.W. 1985. Role of asparagine linked oligosaccharides in the mixed lymphocyte reaction. Effects of Swainsonine and deoxynojirimycin on tumor cell recognition. J. Biol. Chem. in press.Google Scholar
  163. 163.
    Alexander, S., Hubbard, S.C., Strominger, J.L. 1984. HLA-DR antigens of autologous melanoma and B lymphoblastoid cell lines: differences in glycosylation but not protein structure. J. Immunol. 133:315–320.PubMedGoogle Scholar
  164. 164.
    Edidin, M. 1983. MHC antigens and non-immune functions. Immunology Today 4:269–270.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1986

Authors and Affiliations

  • Robert S. Kerbel
  • Philip Frost
  • Douglas A. Carlow
  • Bruce E. Elliott

There are no affiliations available

Personalised recommendations