Skip to main content

Physiological and Biochemical Properties of Contractile Protein ATPase Activity of Aging Myocardium

  • Chapter
Pathobiology of Cardiovascular Injury

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 49))

Abstract

Many regulatory functions in the myocardial cell are changed as a result of age. Growing evidence indicates a significant positive correlation between heart contractile protein enzymatic activity and the functional contractile level of the ventricle. A decrease in myofibrillar, myosin and actomyosin ATPase activity is associated with the aging myocardium (1–3). At high Ca2+ concentrations, the ATPase activity of older rats is significantly lower than that of younger rats. The difference in age-related decline in Ca2+ sensitivity of myocardial ATPase activity may be due to diminished ability of older animals to remove the inhibition of actomyosin ATPase activity by the troponin + tropomyosin system (4). Age-associated alterations in myocardial ultrastructure, cardiac function, excitation-contraction coupling and metabolism have been discussed by several investigators (5,6). Hemodynamic measurements, such as heart rate, cardiac output, blood pressure, and related vascular parameters, have been found in change during the life span of the rat, thus causing the cardiovascular system to operate less efficiently in the older animal (7–9). Cardiac hypertrophy is a characteristic feature that occurs during senescence. It has been shown that depressed contractile protein ATPase activity is a characteristic feature associated with hypertrophy and senescent rat hearts (10–12). Previous reports (13,14) from this laboratory showed that the phosphorylation of contractile proteins is associated with a decrease in contractile protein ATPase activity. The purpose of this study is to investigate age-associated alterations in contractile protein ATPase activity and examine the possible mechanisms associated with such change.

This work was supported in part by USPHS Career Development Award (K04 HL00337) and by American Heart Association, Tulsa Chapter, OK 84-G-14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, N.R., Gale, H.H. and Taylor, N. In: Factors Influencing Myocardial Contractility (Eds. F. Kavaler, R.D. Tanz and J. Roberts ), Academic Press, New York, 1967, pp. 127–133.

    Google Scholar 

  2. Heller, L. and Whitehorn, W.V. Am. J. Physiol. 222: 1613–1619, 1972.

    PubMed  CAS  Google Scholar 

  3. Chesky, A.J. and Rockstein, M. Cardiovasc. Res. 11: 242–246, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Rockstein, M., Chesky, A.J. and Lopez. J. Mech. Ageing Dev. 8: 413–416, 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Weisfeldt, M.L. The Aging Heart: Its Function and Response to Stress. Raven Press, New York, 1980.

    Google Scholar 

  6. Roberts, J. and Goldberg, P.A. Exp. Aging Res. 2: 487–517, 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Shreiner, D.P., Weisfeldt, M.L. and Shock, N.W. Am. J. Physiol. 217: 176, 1976.

    Google Scholar 

  8. Lakatta, E.G. Fed. Proc. 38: 163–167, 1969.

    Google Scholar 

  9. Lee, J.C., Karpeles, L.M. and Downing, S.E. Am. J. Physiol. 222: 432–483, 1972.

    PubMed  CAS  Google Scholar 

  10. Yin, F.C.P., Spurgeon, H.A., Weisfeldt, M.L. and Lakatta, E.G. Circ. Res. 46: 292–300, 1980.

    PubMed  CAS  Google Scholar 

  11. Rockstein, M. and Chesky, J. J. Gerontol. 28: 455–459, 1973.

    PubMed  CAS  Google Scholar 

  12. Dhalla, N.S., Das, P.K. and Sharma. G.P. J. Mol. Cell. Cardiol. 10: 363–385, 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Reddy, Y.S. and Wyborny, L.E. Biochem. Biophys. Res. Commun. 7–3: 703–709, 1976.

    Article  Google Scholar 

  14. Wyborny, L.E. and Reddy, Y.S. Biochem. Biophys. Res. Commun. 81: 1175–1179, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Dowell, R.T., Cutilletta, A.F. and Sodt, P.C. J. Appl. Physiol. 39: 1043–1047, 1975.

    PubMed  CAS  Google Scholar 

  16. Dowell, R.T. Med. Sci. Sports. Exerc. 9: 246–252, 1977.

    CAS  Google Scholar 

  17. Solaro, R.J., Pang, D.C. and Briggs, F.N. Biochem. Biophys. Acta 245: 259–262, 1971.

    Article  PubMed  CAS  Google Scholar 

  18. Huszar, G. and Elzinga, M. J. Biol. Chem. 247: 745–753, 1972.

    PubMed  CAS  Google Scholar 

  19. Spudich, J.A. and Watt, S. J. Biol. Chem. 4: 4866–4871, 1971.

    Google Scholar 

  20. Martell, A.E. In: Stability Constants of Metallion Complexes, Part II, publ. 17, 1971, p. 651.

    Google Scholar 

  21. Fiske, C.H. and Subba, Row, Y. J. Biol. Chem. 66: 375–380, 1925.

    CAS  Google Scholar 

  22. Reddy, Y.S. and Wyborny, L.E. Tex. Rep. Biol. Med. 34: 79–90, 1980.

    Google Scholar 

  23. Cole, H.A. and Perry, S.V. Biochem J. 149: 525–533, 1975.

    PubMed  CAS  Google Scholar 

  24. Reddy, Y.S. Am. J. Physiol. 231: 1330–1336, 1976.

    PubMed  CAS  Google Scholar 

  25. Walsh, M.P., Vallet, B., Autric, F. and Demaille, J.O. J. Biol. Chem. 254: 1236–1244, 1979.

    Google Scholar 

  26. England, P.J. Biochem. J. 160: 295–304, 1976.

    PubMed  CAS  Google Scholar 

  27. Solaro, J., Moir, A.J.G. and Perry, S.V. Nature 262: 615–617, 1976.

    Article  PubMed  CAS  Google Scholar 

  28. Lakatta, E.G., Gerstenblith, G., Angell, C.S., Shock, N.W. and Weisfeldt, M.L. Circ. Res. 36: 262–269, 1975.

    PubMed  CAS  Google Scholar 

  29. Yin, F.C.P., Spurgeon, H.A., Greene, H.L., Lakatta, E.G. and Weisfeldt, M.L. Mech. Ageing Dev. 10: 17–25, 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Hoh, J.F.Y., McGrath, P.Â. and Hale, P.T. J. Mol. Cell. Cardiol. 10: 1053–1076, 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Lompre, A.M., Schwartz, K., d’Albis, A., LaCombe, G., Van Thiem, N. and Swynghedauw, B. Nature 282: 105–17, 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Barany, M. J. Gen. Physiol. 50: 197–218, 1967.

    Article  PubMed  Google Scholar 

  33. Schwartz, K., Lecarpentier, Y., Martin, J.L., Lompre, A.M., Mercadier, J.J. and Swynghedauw, B. J. Mol. Cell. Cardiol. 13: 1071–1075, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Mercadier, J.J., Lompre, A.M., Wisnewsky, C., Samuel, J.L., Bercovici, J., Swynghedauw, B. and Schwartz, K. Circ. Res. 49: 525–532, 1981.

    PubMed  CAS  Google Scholar 

  35. Pemrick, S.M. J. Biol. Chem. 255: 8836–8841, 1980.

    PubMed  CAS  Google Scholar 

  36. Adelstein, R.S. and Contin, M.A. Nature 256: 597–598, 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Morgan, M., Perry, S.V., Ottaway, J. Biochem. J. 157: 687–697, 1976.

    PubMed  CAS  Google Scholar 

  38. Alexis, M. and Gratzer, W.B. Biochemistry 17: 2319–2325, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Holroyde, M.J., Howe, E. and Solaro, R.J. Biochem. Biophys. Acta. 586: 63–69, 1979.

    CAS  Google Scholar 

  40. Murakami, U. and Uchida, K. Biochem. Biophys. Acta 525: 219–229, 1978.

    PubMed  CAS  Google Scholar 

  41. Murakami, U. and Uchida, K. J. Biochem. 86: 553–562, 1979.

    PubMed  CAS  Google Scholar 

  42. Bhan, A., Malhotra, A., Hatcher, V.B., Sonnenblick, E.S. and Sceuer, J. J. Mol. Cell. Cardiol. 10: 796–777, 1978.

    Article  Google Scholar 

  43. Kuo, T. and Bhan, A. Biochem. Biophys. Res. Commun. 92: 570–576, 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Siemankowski, R.F. and Dreizen, P. J. Biol. Chem. 253: 8648–8658, 1978.

    PubMed  CAS  Google Scholar 

  45. Griffin, W.S. and Wildenthal, K. J. Mol. Cell. Cardiol. 10: 669–676, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Reddy, Y.S. (1985). Physiological and Biochemical Properties of Contractile Protein ATPase Activity of Aging Myocardium. In: Stone, H.L., Weglicki, W.B. (eds) Pathobiology of Cardiovascular Injury. Developments in Cardiovascular Medicine, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2621-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2621-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9639-3

  • Online ISBN: 978-1-4613-2621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics