The Role of Arachidonic Acid Metabolites in the Regulation of Neutrophil Function

Part of the Prostaglandins, Leukotrienes, and Cancer book series (PLAC, volume 4)


Acute inflammation is provoked by a wide variety of mediators. These mediators may affect vascular tone and permeability (e.g. histamine, serotonin), stimulate peripheral pain receptors (e.g. bradykinin), as well as attract and activate inflammatory cells (e.g. complement components, platelet activating factor). The release of mediators from such inflammatory cells (including metabolites of arachidonic acid, lysosomal proteases and oxygen-derived products such as superoxide anion) promote the permanent destructive tissue damage characteristic of the acute inflammatory response.


Human Neutrophil Phorbol Myristate Acetate Neutrophil Activation Superoxide Anion Generation Neutrophil Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trang LE: Prostaglandins and Inflammation. Seminars Arth. & Rheum 9: 153–190, 1980CrossRefGoogle Scholar
  2. 2.
    Douglas WW: Involvement of calcium in exocytosis and the exocytosis vesiculation sequence. Biochem. Soc. Symp. (39):1–28, 1974.PubMedGoogle Scholar
  3. 3.
    Putney JE: Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. (30): 209–245, 1979Google Scholar
  4. 4.
    Goldstein IM, Horn JK, Kaplan HB, Weissmann G: Calcium induced lysozyme secretion from human polymorphonuclear leukocytes. Biochem. Biophys. Res. Comm. (60):807–812, 1974.PubMedCrossRefGoogle Scholar
  5. 5.
    O’Flaherty JT, Showell HJ, Becker EL, Ward PA: Substances which activate neutrophils. Mechanism of action. Am. J. Path. (92):155–166, 1978.PubMedGoogle Scholar
  6. 6.
    Smith RJ, Wierenga W, Iden S: Characteristics of N-formyl-methionyl-leucyl-phenylalanine as an inducer of lysosomal enzyme release from human neutrophils. Inflamm. (4):73–88, 1980CrossRefGoogle Scholar
  7. 7.
    Smolen JE, Korchak HM, Weissmann G: The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim. Biophys. Acta (677):512–520, 1981.Google Scholar
  8. 8.
    Malagodi MH, Chiou CY: Pharmacological evaluation of a new calcium antagonist 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8): Studies in smooth muscle. Eur. J. Pharmacol. (27):25–33, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Pozzan T, Lew DP, Wollheim CB, Tsien RY: Is cytosolic ionized calcium regulating neutrophil activation? Science (221):1413–1415, 1983PubMedCrossRefGoogle Scholar
  10. 10.
    Korchak HM, Vienne K, Rutherford LE, Wilkenfeld, C, Finkelstein MC, Weissmann G: Stimulus response coupling in the human neutrophil II Temporal analysis of changes in cytosolic calcium and calcium efflux. J. Biol. Chem. (259),4076–4082, 1984PubMedGoogle Scholar
  11. 11.
    Sando JJ, Young MC: Identification of high-affinity phorbol ester receptor in cytosol of EL-4 thymoma cells: requirement for calcium, magnesium and phospholipids. Proc. Natl. Acad. Sci. USA (80):2642–2646, 1983PubMedCrossRefGoogle Scholar
  12. 12.
    Smolen JE, Weissmann G: The effect of various stimuli and calcium antagonists on the fluorescence response of chlortetracycline-loaded human neutrophils. Biochim. Biophys. Acta (720):172–180, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Naccache PH, Showell HJ, Becker EL, Sha’afi RI: Involvement of membrane calcium in the responce of rabbit neutrophils to chemotactic factors as evidenced by the fluorescence of chlortetracycline. J. Cell Biol. (83):179–186, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    Smolen JE, Korchak HM, Weissmann G: Increased levels of cyclic adenosine-3’,5’-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest. (65):1077–1085, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Berlin T, Petersen CS, Esmann V: The role of calcium and cyclic adenosine-3’,5’-monophosphate in the regulation of glycogen metabolism in phagocytosing human polymorphonuclear leukocytes. Biochim. Biophys. Acta (542):63–76, 1978.Google Scholar
  16. 16.
    Jackowski S, Sha’afi RI: Response of adenosine cyclic-3’,5’-monophosphate level in rabbit neutrophils to the chemotactic peptide formylmethionyl-leucylphenylalanine. Molec. Pharmacol. (16):473–481, 1979.Google Scholar
  17. 17.
    Simchowitz L, Fischbein LC, Spilberg I, Atkinson JP: Induction of a transient elevation in intracellular levels of adenosine 3’,5’-cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation. J. Immunol. (124):1482–14911, 1980.PubMedGoogle Scholar
  18. 18.
    Keller HU, Gerisch G, Wissler J: A transient rise in cyclic AMP levels following chemotactic stimulation of neutrophil granulocytes. Cell Biol. Internat. Reports (3):759–765, 1979.Google Scholar
  19. 19.
    Smolen JE, Weissmann G: Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3’-5’monophosphate. Biochim. Biophys. Acta (672):197–206, 1981.PubMedGoogle Scholar
  20. 20.
    Simchowitz L, Spilberg I, Atkinson JP: Evidence that the functional responses of human neutrophils occur independently of transient elevations in cAMP levels. Fed. Proc. (42): 1080, 1983.Google Scholar
  21. 21.
    Zurier RB, Weissmann G, Hoffstein S, Kammerman S, Tai H: Mechanisms of lysosomal enzyme release from human leukocytes II. Effects of cAMP and cGMP, autonomic agonists and agents which affect microtubule function. J. Clin. Invest. (43):297–309, 1974.CrossRefGoogle Scholar
  22. 22.
    Rasmussen H. and Goodman DBP: Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. (57):421, 1977.PubMedGoogle Scholar
  23. 23.
    Huang C-K, Hill Jr J, Mackin WM, Bormann BJ, Becker EL: Effects of chemotactic factors on the protein phosphorylation of rabbit peritoneal neutrophils. Fed. Proc. (92):1080, 1983.Google Scholar
  24. 24.
    Andrews PC, Babior BM: Endogenous protein phosphorylation by resting and activated human neutrophils. Blood (61):333–340, 1983.PubMedGoogle Scholar
  25. 25.
    Niedel JE, Kuhn LJ, Vandenbark GR: Phorbol diester receptor copurifies with protein kinase C Proc. Natl. Acad. Sci. USA (80):36–40, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirk CJ: Ligand-stimulated inositol lipid metabolism in the liver: Relationship to receptor function. Cell Calcium (3): 399–412, 1982.PubMedCrossRefGoogle Scholar
  27. 27.
    Berridge MJ, Fain JN: Inhibition of phosphatidyl inositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem. J. (178): 58–69, 1979.Google Scholar
  28. 28.
    Karnovsky M L, Shafer AW, Cagan RH, Graham RC, Karnovsky MJ, Glass EA, Saito K: Membrane function and metabolism in phagocytic cells. Trans. N. Y. Acad. Sci. (28): 778–787, 1966.PubMedGoogle Scholar
  29. 29.
    Sostry PS, Hokin LE: Studies on the role of phospholipids in phagocytosis. J. Biol. Chem. (241): 3354–3361, 1966.Google Scholar
  30. 30.
    Tou J-S, Stjernholm RL: Stimulation of the incorporation of 32Pi and myo(23H)-inositol into the phosphoinositides in polymorphonuclear leukocytes during phagocytosis. Arch. Biochem. (160): 487–494, 1974.Google Scholar
  31. 31.
    Tou J-S: Modulation of 32Pi incorporation into phospholipids of polymorphonuclear leukocytes by ionophore A23187. Biochim. Biophys. Acta (531): 167–178, 1978.Google Scholar
  32. 32.
    Cockcroft S, Bennett JP, Gomperts BD: F-Met-Leu-Phe-induced phosphatidyl inositol turnover in rabbit neutrophils is dependent on extracellular calcium. FEBS Letters (110): 115–118, 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Serhan C, Korchak HM, Broekman J, Smolen JE, Marcus A, Weissmann G: Phosphatidyl inositol breakdown and phosphatidic acid accumulation in stimulated human neutrophils: Relationship to calcium mobilization and calcium uptake. Biochim. Biophys. Acta (In Press)Google Scholar
  34. 34.
    Bombardieri S et al: The synovial prostaglandin system in chronic inflammatory arthritis: Differential effects of steroidal and non-steroidal anti-inflammatory drugs. Br. J. Pharm. (73):893–901, 1981.Google Scholar
  35. 35.
    Dayer JM, Krane SM et al: Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells. Proc. Natl Acad. Sci. USA (73):945–949, 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Robinson DR et al: Prostaglandin-stimulated bone resorption by rheumatoid synovial. J. Clin. Invest. (56):1181, 1975.PubMedCrossRefGoogle Scholar
  37. 37.
    Weissmann G, Smolen JE, Korchak H: Prostaglandins and Inflammation: Receptor/cyclase Coupling as an Explanation of why PGEs and PGI2 Inhibit Functions of Inflammatory Cells“ in Advances in Prostaglandins and Thromboxane Research, Vol. 8, B. Samuelsson, B., Ramwell, P.W. and Paoletti, R. eds, Raven Press, New York, pp 1637–1653, 1980.Google Scholar
  38. 38.
    Fantone JC, Kinnes DA: Prostaglandin E1 and Prostaglandin I2 modulation of superoxide production by human neutrophils. Biochem. Biophys. Res. Comm. (113): 506–512, 1983.PubMedCrossRefGoogle Scholar
  39. 39.
    Wong K, Freund K: Inhibition of the n-formylmethionyl-leucyl-phenylalanine induced respiratory burst in human neutrophils by adrenergic agonists and prostaglandins of the E series Can. J. Physiol. Pharmacol. (59): 915–92L, 1981.CrossRefGoogle Scholar
  40. 40.
    Spisani S, Vicenzi E, Traniello S, Pollini G P., Barco A: Synthetic prostaglandin analogue: In vitro studies on human neutrophils. Immunopharmacol (4): 323–330, 1982.CrossRefGoogle Scholar
  41. 41.
    O’Flaherty JT, Kreutzer DL, Ward PA: Effect of Prostaglandins E1, E2 and F2a on Neutrophil aggregation Prostaglandins (17): 201–209, 1979.Google Scholar
  42. 42.
    Camussi G, Tetta C, Bussolino F, Cappio FC, Coda R, Masers C, Segoloni G: Mediators of immune-complex -induced aggregation of polymorphonuclear neutrophils II. Platelet-activating factor as the effector substances of immune-induced aggregation. Int. Archs. Allergy Appl. Immun. (64): 25–41, 1981.CrossRefGoogle Scholar
  43. 43.
    Lew PD, Dayer J-M, Wollheim CB, Pozzan T: Effect of leukotriene B4, prostaglandin E2 and arachidonic acid on cytosolic-free calcium in human neutrophils. FEBS Letts. (166): 44–48, 1984.CrossRefGoogle Scholar
  44. 44.
    Abramson S, Korchak H, Kimmel S, Roberts C, Wilkenfeld C, Haines K, Rich A, Rider L, Weissmann G: The cellular effects of nonsteroidal antiinflammatory drugs (NSAID) cannot be due to inhibition of prostaglandin (PG) release. Arth. Rheum. (27):S22, 1984.Google Scholar
  45. 45.
    Smolen JE: The fluorescence response of chlortetracycline-loaded human neutrophils is modulated by prostaglandin E1, but not by cyclic nucleotides. FEBS Letts. (163): 119–123, 1983.CrossRefGoogle Scholar
  46. 46.
    Stenson WF, Parker CW: Metabolism of arachidonic acid in ionophore-stimulated neutrophils. J. Clin. Invest. (64):1457–1465, 1979.PubMedCrossRefGoogle Scholar
  47. 47.
    Serhan CN, Smolen JE, Korchak HM, Weissmann G: Leukotriene B4 is a complete secretagogue in human neutrophils: Ca2+ translocation in liposome and kinetics of neutrophil activation. In: Samuelsson B, Paoletti R, Ramwell P (ed) Adv. Prostaglandin and Thromboxane Res. Raven Press, New York, 1983, pp 53–63.Google Scholar
  48. 48.
    Serhan CN, Fridovich J, Goetzl EJ, Dunham PB, Weissmann G: Leukotriene B4 and phosphatidic acid are calcium ionophores. J. Biol. Chem. (257):4746–4752, 1982.PubMedGoogle Scholar
  49. 49.
    Serhan CN, Lundberg U, Weissmann G, Samuelsson B: Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins (27):563–581, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Less CW, Lewis K, Austen F, Corey EJ: Oxidative inactivation of the sulfidopeptide leukotrienes by human polymorphonuclear leukocytes (PMNs). Fed. Proc. (42): 1080–1084, 1983.Google Scholar
  51. 51.
    Stenson WF, Parker CW: Monohydroxyeicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J. Immunol. (124):2100–2104, 1980.PubMedGoogle Scholar
  52. 52.
    Goetzl EJ, Brash AR, Tauber AI, Oates JA, Hubbard WC: Modulation of human neutrophil function by monohydroxyeicosatetraenoic acids. Immunology 39:491–501, 1980.PubMedGoogle Scholar
  53. 53.
    Goetzl EJ, Sun FF: Generation of unique monohydroxyeicosatetraenoic acids from arachidonic acid by human neutrophils. J. Exp. Med. 150:460Google Scholar
  54. 54.
    Bray MA, Ford-Hutchinson AW, Smith MJH: Leukotriene BS: Biosynthesis and biologic activity. In: SRS-A and Leukotrienes (Piper, PJ, ed.) Chichester, Research Studies Press, Inc., pp 253–270, 1981.Google Scholar
  55. 55.
    Smith MJH, Ford-Hutchinson AW, Bray MA: Leukotriene B: A potential mediator of inflammation. J. Pharm. Pharmacol. (32):517–518, 1982.CrossRefGoogle Scholar
  56. 56.
    Higgs GA, Bax CMP, Moncada S: Inflammatory properties of lipoxygenase products and the effects of indomethacin and BW 755 c on prostaglandin production, leukocyte migration and plasma exudation in rabbit Skin. In. Adv. Prostaglandin Thromboxane Leukotriene Res. Raven Press, New York, (9), pp 331–339, 1982.Google Scholar
  57. 57.
    Malmsten CL, Palmblad J, Uden A-M, Radmark O Engstedt L, Samuelsson B: Leukotriene B4: A highly potent stereospecific factor stimulating migration of polymorphonuclear leukocytes of different species. Prostaglandins (20):411–418, 1980.CrossRefGoogle Scholar
  58. 58.
    Bhattacherjee P, Hammond B, Salmon JA, Stepney P, Eakins KE: Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Eur. J. Pharmacol. (73):21–28, 1981.PubMedCrossRefGoogle Scholar
  59. 59.
    Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ: Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature (286):264–265, 1980.PubMedCrossRefGoogle Scholar
  60. 60.
    Dahlen S-E, Bjork J, Hedqvist P, Arfors K-E, Hammarstrom S, Lindgren J-A, Samuelsson B: Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. USA (78):3887–3891, 1981PubMedCrossRefGoogle Scholar
  61. 61.
    Bray MA, Cunningham FM, Ford-Hutchinson AW, Smith MJH: Leukotriene B4: A mediator of vascular permeability. Br. J. Pharmacol. (72):483–486, 1981.PubMedGoogle Scholar
  62. 62.
    Williams TJ, Jose PJ, Wedmore CV, Peck MJ, Forest MJ: Mechanisms underlying inflammatory edema: The importance of synergism between prostaglandins, leukotrienes and complement derived peptides. In: Adv. Prostaglandin and Thromboxane Res., Raven Press, New York, 11: 33–37, 1983.Google Scholar
  63. 63.
    Kreisle R, Parker C: Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes. J. Exp. Med. (157):628–641, 1983.PubMedCrossRefGoogle Scholar
  64. 64.
    Ham EA, Soderman DD, Zanetti ME, Dougherty HW, McCauley E, Kuehl FA: Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc. Natl. Acad. Sci. USA (80):4349–4353, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

There are no affiliations available

Personalised recommendations