Ventricular End-Systolic Pressure Volume Relations

  • Kiichi Sagawa
  • Kenji Sunagawa
  • W. Lowell Maughan


Around the turn of the century, Otto Frank [1] represented contraction of the ventricle as a loop trajectory that relates its instantaneous pressure (P) to its instantaneous volume (V) in the pressure-volume plane. This representation of the cardiac cycle came to be called the pressure-volume loop diagram, as shown in figure 4–1.


Stroke Volume Left Ventricular Pressure Contractile State Volume Axis Isolate Canine Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frank, O. Die Grundform des arteriellen Pulses. Z. Biol. 37: 483–526, 1898.Google Scholar
  2. 2.
    Frank, O. Zur Dynamik des Herzmuskels. Z. Biol. 32: 370–477, 1895.Google Scholar
  3. 3.
    Brady, A.H. Length-tension relations in cardiac muscle. Am. Zoologist 7: 603–610, 1967.Google Scholar
  4. 4.
    Taylor, R.R. Active length-tension relations compared in isometric, afterload, and isotonic contractions of cat papillary muscle. Circ. Res. 26: 279–288, 1970.PubMedGoogle Scholar
  5. 5.
    Meiss, R.A. and Sonnenblick, E.H. Controlled shortening in heart muscle: Velocity-force and active state properties. Am. J. Physiol. 222: 630–639, 1972.PubMedGoogle Scholar
  6. 6.
    Nakayama, N., Sagawa, K., and Shoukas, A.A. Force-length-time relations in heart muscle under various mechanical loadings. Fed. Proc. 34: 412, 1975.Google Scholar
  7. 7.
    Strobeck, J.E., Krueger, J., and Sonnenblick, E.H. Load and time considerations in the forcelength relation of cardiac muscle. Fed Proc. 39: 175–181, 1989.Google Scholar
  8. 8.
    Warner, H. Use of analogue computers in the study of comtrol mechanisms in circulation.Fed. Proc. 21: 87–91, 1962.Google Scholar
  9. 9.
    Robinson, D.A. Quantitative analysis of the control of cardiac output in the isolated left ventricle.Circ. Res. 17: 207–221, 1965.Google Scholar
  10. 10.
    Snyder, M. and Rideout, V.C. Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. 16: 325–334, 1969.PubMedCrossRefGoogle Scholar
  11. 11.
    Monroe, R.G. and French, G.N. Left ventricular pressure-volume relationships and myocardial oxygen consumption in the isolated heart. Circ. Res. 9: 362–374, 1961.PubMedGoogle Scholar
  12. 12.
    Monroe, R.G., Strange, R.H., LaFarge, C.G., and Levy, J. Ventricular performance, pressure-volume relationships and 02 consumption during hypothermia. Am. J. Physiol. 206: 67–73, 1964.PubMedGoogle Scholar
  13. 13.
    Jacob, R. and Weigand, K.H. Die endsystolischen Druck-Volumenbeziehungen als Grundlage einer Beurteilung der Kontraktilitaet des linken Ventrikels in situ. Pfluegers Archiv. 289: 37–49, 1966.CrossRefGoogle Scholar
  14. 14.
    Mitchell,J.H., Wildenthal, K., and Mullins, C.B. Geometrical studies of the left ventricle utilizing biplane cinefluorography. Fed. Proc. 28: 1334–1343, 1969.PubMedGoogle Scholar
  15. 15.
    Taylor, R.R., Covell, J.W., and Ross, J., Jr. Volume-tension diagrams of ejecting and isovolumic contractions in left ventricle. Am. J. Physiol. 216: 1097–1102, 1969.PubMedGoogle Scholar
  16. 16.
    Suga, H. Time course of left ventricular pressure-volume relationship under various extents of aortic occlusion. Jap. Heart J. 11: 373–378, 1970.PubMedCrossRefGoogle Scholar
  17. 17.
    Suga, H. Left ventricular pressure-volume ratio in systole as an index inotropism. Jap. Heart J. 12: 153–160, 1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Suga, H., Sagawa, K., and Shoukas, A.A. Load independence of instantaneous pressure-volume relation of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322, 1973.PubMedGoogle Scholar
  19. 19.
    Grossman, W., Braunwald, E., Mann, T., McLaurin, L.P., and Green, L.H. Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56: 845–52, 1977.PubMedGoogle Scholar
  20. 20.
    Kil, T.J.M. and Schiereck, P. Influence of the velocity of changes in end diastolic volume on the Starling mechanism of isolated left ventricles. Pflugers Archiv. 396: 245–253, 1983.Google Scholar
  21. 21.
    Suga, H. and Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35: 117–126, 1974.PubMedGoogle Scholar
  22. 22.
    Sagawa, K., Suga, H., Shoukas, A.A. and Bakalar, K.M. End-systolic pressure-volume ratio: A new index of contractility. Am. J. Cardiol. 40: 748–753, 1979.CrossRefGoogle Scholar
  23. 23.
    Sagawa, K. Representation of Cardiac Pump with Special Reference to Afterload. In Cardiovascular System Dynamics: Modes and Measurements, Kenner, T., Busse, and Szalkay, H.H. (eds.). New York: Plenum Press, 1982, pp. 1–18.Google Scholar
  24. 24.
    Sagawa, K. The ventricular pressure-volume diagram revisited. Circ. Res. 43: 677–687, 1978.PubMedGoogle Scholar
  25. 25.
    Iizuka, M. Comments on “The ventricular pres-sure-volume diagram revisited.” Circ. Res. 44: 731, 1979.PubMedGoogle Scholar
  26. 26.
    Suga, H. End-systolic pressure-volume relations. Circulation 59: 419, 1979.PubMedGoogle Scholar
  27. 27.
    Suga, H. and Yamakoshi, K. Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. Circ. Res. 40: 445–450, 1977.PubMedGoogle Scholar
  28. 28.
    Suga, H., Kitabatake, A., and Sagawa, K. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ. Res. 44: 238–249, 1979.PubMedGoogle Scholar
  29. 29.
    Suga, H., Sagawa, K., and Demer, L. Determinants of instantaneous pressure in canine left ventricle. Time and volume specification. Circ. Res. 46: 256–263, 1980.PubMedGoogle Scholar
  30. 30.
    Sunagawa, K., Burkhoff, D., Lim, K.O., and Sagawa, K. Impedance loading servo pump system for excised canine heart. Am. J. Physiol. 243 (Heart Circ. Physiol. 12 ): H346 - H350, 1982.Google Scholar
  31. 31.
    Maughan, K., Sunagawa, W.L., Burkhoff, D., and Sagawa, K. Effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ. Res. 54: 595–602, 1984.Google Scholar
  32. 32.
    Suga, H., Saeki, T., and Sagawa, K. End-systolic force-length relationship of non-excised canine papillary muscle. Am. J. Physiol. 233: (Heart Circ. Physiol. 2) H711 - H717, 1977.PubMedGoogle Scholar
  33. 33.
    Sunagawa, K., Maughan, W.L., Friesinger, G., Guzman, P., Chang, M., and Sagawa, K. Effects of coronary arterial pressure on left ventricular end-systolic pressure-volume relation of isolated canine heart. Circ. Res. 50: 727–734, 1982.PubMedGoogle Scholar
  34. 34.
    Maughan, W.L., Shoukas, A.A., Sagawa, K., and Wesifeldt, M.L. Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44: 309, 1979.PubMedGoogle Scholar
  35. 35.
    Evans, C.L., and Matsuoka, Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J. Physiol. (Lond.) 49: 378–405, 1915.Google Scholar
  36. 36.
    Coleman, H.N., Sonnenblick, E., and Braunwald, E. Myocardial oxygen consumption associated with external work: The Fenn effect. Am. J, Physiol. 217: 291–296, 1969.Google Scholar
  37. 37.
    Gibbs, C.L. Cardiac energetics. Physiol. Rev. 58: 174–254, 1978.PubMedGoogle Scholar
  38. 38.
    Sarnoff, S J., Braunwald, E., Welch, G.H., Case, R.B., Stainsby, W.N., and Macruz, R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Am. J. Physiol. 192: 148–156, 1958.PubMedGoogle Scholar
  39. 39.
    Weber, K.T. and Janicki, J.S. Myocardial oxygen consumption: The role of wall force and shortening. Am. J. Physiol. 233 (Heart Circ. Physiol. 2 ): H421 - H430, 1977.Google Scholar
  40. 40.
    Suga, H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am. J. Physiol. 236 (Heart Circ, Physiol. 5):H498–H5O5, 1979.Google Scholar
  41. 41.
    Suga, H. External mechanical work from relaxing ventricle. Am. J. Physiol. 236 (Heart Circ. Physiol. 5 ): H494 - H497, 1979.Google Scholar
  42. 42.
    Suga, H. Relaxing ventricle performs external mechanical work greater than quickly releases elastic energy. Eur, Heart J. 1 (Suppl. A): 131–137, 1980.Google Scholar
  43. 43.
    Khalafbeigui, F., Suga, H., and Sagawa, K. Left ventricular systolic pressure-volume area correlates with oxygen consumption. Am. J. Physiol. 237 (Heart Circ. Physiol. 6 ): H566 - H569, 1979.Google Scholar
  44. 44.
    Suga, H., Hayashi, T., and Shirahata, M. Ventricular systolic pressure volume area as predictor of cardiac oxygen consumption. Am. J. Physiol. 240 (Heart Circ. Physiol. 9 ): H39 - H44, 1981.Google Scholar
  45. 45.
    Suga, H., Hayashi, T., Shirahata, M., Suehiro, S., and Hisano, R. Regression of cardiac oxygen consumption on ventricular pressure-volume area in dog. Am. J. Physiol. 240 (Heart Circ. Physiol. 9 ): H320 - H325, 1981.Google Scholar
  46. 46.
    Suga, H., Hayashi, T., Suehiro, S., Hisano, R., Shirahata, M., and Ninomiya, I. Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure volume areas in canine left ventricle. Circ. Res. 49: 1982–1091, 1981.Google Scholar
  47. 47.
    Suga, H., Hisano, R., Hirata, S., Hayasi, T., and Ninomiya, I. Mechanism of higher oxygen consumption rate: Pressure loaded vs. volume-loaded heart. Am. J. Physiol. 242 (Heart Circ. Physiol. 11 ): H942 - H948, 1982.Google Scholar
  48. 48.
    Britman, N.A. and Levine, J.H. Contractile element work: A major determinant of myocardial oxygen consumption. J. Clin. Invest. 43: 1397–1408, 1964.PubMedCrossRefGoogle Scholar
  49. 49.
    Burns, J.W. and Covell, J.W. Myocardial oxygen consumption during isotonic and isovolumic contractions in the intact heart. Am. J. Physiol. 223: 1491–1408, 1964.Google Scholar
  50. 50.
    Sunagawa, K., Maughan, W.L., Burkhoff, D., and Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 245 (Heart and Circ Physiol 14) H773 - H780, 1983.Google Scholar
  51. 51.
    Sonnenblick, E.H. Implications of muscle mechanics in heart. Fed. Proc. 21: 975–990, 1962.PubMedGoogle Scholar
  52. 52.
    Streeter, D.D., Jr. Gross Morphology and Fiber Geometry of the Heart. In Handbook of Physiology. Section 2: The Cardiovascular System, Berne, R.M.. Baltimore: William & Wilkins Company, pp. 61–112, 1979.Google Scholar
  53. 53.
    Bulkley, B.H., Weisfeldt, M.L., and Hutchins, G.M. Asymmetric septal hypertrophy and myocardial fiber disarray: Features of normal, developing and malformed hearts. Circulation 56: 292–298, 1977.PubMedGoogle Scholar
  54. 54.
    Yin, F.C.P. Ventricular wall stress. Circ. Res. 49: 829–842, 1981.PubMedGoogle Scholar
  55. 55.
    Suga, H. and Sagawa, K. Graphical estimation of ventricular wall force and stress from pressure-volume diagram. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H787 - H789, 1979.Google Scholar
  56. 56.
    Hood, W.P. Thomson, W.J., Rackley, C.E., and Rolett, E.C. Comparison of calculations of left ventricular wall stress in man from thin walled and thick-walled ellipsoidal models. Circ. Res. 24: 575–582, 1969.PubMedGoogle Scholar
  57. 57.
    Ross, J., Jr. Cardiac function and myocardial contractility: A perspective. J. Am. Coll. Cardiol. 1: 52, 1983.CrossRefGoogle Scholar
  58. 58.
    Mehmel, H.C., Stockins, B., Ruffmann, K., Olshausen, K., Schuler, G., and Kubler, W. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 63: 1216–1222, 1981.PubMedCrossRefGoogle Scholar
  59. 59.
    Suga, H. and Sagawa, K. Mathematical interrelationship between instantaneous ventricular pressure-volume ratio and myocardial force-velocity relation. Ann. Biomed. Eng. 1: 160, 1972.PubMedCrossRefGoogle Scholar
  60. 60.
    Suga, H., Sagawa, K., and Shoukas, A.A. Carotid sinus baroreflex effects on instantaneous pressure-volume ratio of the canine left ventricle. J. Physiol. Soc. Japan 36: 104–105, 1974.Google Scholar
  61. 61.
    Braunwald, F. Assessment of Cardiac Performance. In Heart Disease, A textbook of Cardiovascular Medicine. Philadelphia: Saunders, 1980, pp. 472–492.Google Scholar
  62. 62.
    Weber, K.T. and Janicki, J.S. Intraaortic balloon counterpulsation. Ann. Thor. Surg. 17: 602–636, 1974.CrossRefGoogle Scholar
  63. 63.
    Sunagawa, K., Maughan, W.L., and Sagawa, K. Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ. Res. 52: 170–178, 1983.PubMedGoogle Scholar
  64. 64.
    Tyson, K., Mandelbaum, I., and Shumacker, H.B., Jr. Experimental production and study of left ventricular aneurysms. J. Thor. Card. Surg. 44: 731–737, 1962.Google Scholar
  65. 65.
    Hood, W.B., Jr. Experimental myocardial infarction. III. Recovery of left ventricular function in the healing phase. Contribution of increased fiber shortening in noninfarcted myocardium. Am. Heart. J. 79: 531–538, 1970.PubMedCrossRefGoogle Scholar
  66. 66.
    Theroux, P., Ross, J., Jr., Franklin, D., Covell, J.W., Bloor, C.M., and Sasayama, S. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res. 40: 158–165, 1977.PubMedGoogle Scholar
  67. 67.
    Kumar, R., Hood, W.B., Jr., Joison, J., Norman, J.C., and Abelman, W.H. Experimental myocardial infarction. II. Acute depression and subsequent recovery of left ventricular function. Serial measurements in intact conscious dogs. J. Clin. Invest. 49: 55–62, 1970.PubMedCrossRefGoogle Scholar
  68. 68.
    Fletcher, PJ., Pfeffer, J.M., Pfeffer, M.A., and Braunwald, E. Left ventricular diastolic pressure-volume relation in rats with healed myocardial infarction. Circ. Res, 49: 618–626, 1981.PubMedGoogle Scholar
  69. 69.
    Brawnwald, E., Ross, J., Jr., and Sonnenblick, E.H. Methods for Assessing Cardiac Contractility. In Mechanisms of Contraction of the Normal and Failing Heart, 2nd ed. Boston: Little, Brown, 1976.Google Scholar
  70. 70.
    Merillon, J.P., Motte, G., Leclerc, J.F., Azancot, A., and Gourgon, R. Le rapport pression-volume ventriculaire, indice de performance ventriculaire gauche chez l’homme La Nouvelle Presse Medicate Nouv. Presse Med. 23: 1455, 1977.Google Scholar
  71. 71.
    Sasayama, A. and Kotoura H. Echocardiographic approach for the clinical assessment of left ventricular function: The analysis of end-systolic pressure (wall stress)-diameter relation and force-velocity relation of ejecting ventricle. Jap. Circ. J. 43: 357, 1979.PubMedCrossRefGoogle Scholar
  72. 72.
    Marsh, J.D., Green, L.H., Wynne, J., Cohn, P.F., and Grossman, W. Left ventricular pressure-dimension and stress-length relations in normal human subjects. Am. J. Cardiol. 44: 1311, 1979.PubMedCrossRefGoogle Scholar
  73. 73.
    Nivatpumin, T., Katz, S., and Scheur, J. Peak left ventricular systolic pressure/end-systolic volume ratio: A sensitive detector of left ventricular disease. Am. J. Cardiol. 43: 969, 1979.PubMedCrossRefGoogle Scholar
  74. 74.
    Slutsky, R., Karliner, J., Gerber, K., Battler, A., Froelicher, V., Gregoratos, G., Peterson, K., and Ashburn, W. Peak systolic blood pressure/endsystolic volume ratio: Assessment at rest and during exercise in normal subjects and patients with coronary heart disease. Am. J. Cardiol. 46: 813, 1980.PubMedCrossRefGoogle Scholar
  75. 75.
    Sunagawa, K., Yamada, A., Senda, Y., Kikuchi, Y., Nakamura, M., Shibahara, T., and Nose, Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans. Biomed. Eng., BME-27: 299, 1980.Google Scholar
  76. 76.
    Shroff, S., Janicki, J.S., and Weber, K.T. Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H110 - H124, 1983.PubMedGoogle Scholar
  77. 77.
    Kono, A., Maughan, W.L., Sunagawa, K., Kallman, C., Sagawa, K., and Weisfeldt, M.L. Left ventricular end-ejection pressure and peak pressure to estimate the end-systolic pressure volume relationship. Circulation 70: 1057–1065, 1984.PubMedCrossRefGoogle Scholar
  78. 78.
    Elzinga, G. and Westerhof, N. Pressure-volume relations in isolated cat trabecula. Circ. Res. 49: 388–394, 1978.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Kiichi Sagawa
    • 1
  • Kenji Sunagawa
  • W. Lowell Maughan
  1. 1.The Departments of Biomedical Engineering and MedicineThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations