Skip to main content

Current Status of Interventions Designed to Limit Infarct Size

  • Chapter
The Ventricle

Abstract

Coronary artery disease remains the most serious public health problem in the Western world. In the United States alone, each year there are 1,250,000 myocardial infarctions (MI) and 650,000 patients die as a result of their acute MI. The loss of viable myocardium in those patients who survive acute infarction also leads to major morbidity from heart failure and cardiac arrhythmias. Coronary care units, which were developed in the late 1960s and early 1970s, have been able to provide close observation and electrocardiographic monitoring of patients with acute MI and have reduced the number of deaths due to arrhythmias and conduction disturbances. In recent years, however, in-hospital deaths from acute infarction have not changed significantly [1] despite the many advances in cardiovascular therapy and technology. Most in-hospital deaths related to acute MI now are due to pump failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldman, L., Cook, F., Hashimoto, B., Stone, P., Muller, J., and Loscalzo, A. Evidence that hospital care for acute myocardial infarction has not contributed to the decline in coronary mortality between 1973–1974 and 1978–1979. Circulation 65:936–942, 1982.

    PubMed  CAS  Google Scholar 

  2. Page, D.L., Caulfield, J.B., Kastor, J.A., DeSanctis, R.W., and Sanders, C.A. Myocardial changes associated with cardiogenic shock. N. Engl. J. Med. 285:133–137, 1971.

    PubMed  CAS  Google Scholar 

  3. Geltman, E.M., Ehsani, A.A., Campbell, M.K., Schectman, K., Roberts, R., and Sobel, B.E. The influence of location and extent of myocardial infarction on long-term ventricular dysrhythmia and mortality. Circulation 60:805–814, 1979.

    PubMed  CAS  Google Scholar 

  4. Sobel, B.E., Bresnahan, G.F., Shell, W.E., and Yoder, R.D. Estimation of infarct size in man and its relation to prognosis. Circulation 46:640–648, 1972.

    PubMed  CAS  Google Scholar 

  5. Cox, J.L., McLaughlin, V.W., Flowers, N.C., and Horan, L.G. The ischemic zone surrounding acute myocardial infarction. Its morphology as detected by dehydrogenase staining. Am. Heart J. 76:650–659, 1968.

    PubMed  CAS  Google Scholar 

  6. Braunwald, E. The pathogenesis and treatment of shock in myocardial infarction. Johns Hopkins Med. J. 121:421–429, 1967.

    PubMed  CAS  Google Scholar 

  7. Maroko, P.R. and Braunwald, E. Modification of myocardial infarct size after coronary occlusion. Ann. Int. Med. 79:720–733, 1973.

    PubMed  CAS  Google Scholar 

  8. Rude, R.E., Muller, J.E., and Braunwald, E. Efforts to limit the size of myocardial infarcts. Ann. Intern. Med. 95:736–761, 1981.

    PubMed  CAS  Google Scholar 

  9. Braunwald, E., Covell, J.W., Maroko, P.R., and Ross, J., Jr. Effects of drugs and of counterpulsation on myocardial oxygen consumption. Circulation 40 (Suppl. IV):IV-220—IV-228, 1969.

    Google Scholar 

  10. Kloner, R.A. and Braunwald E. Review: Observations on experimental myocardial ischemia. Cardiovasc. Res. 14:371–395, 1980.

    PubMed  CAS  Google Scholar 

  11. Roberts, R., Gowda, K.S., Ludbrook, P.A., and Sobel, B.E. Specificity of elevated serum MB creatine phosphokinase activity in the diagnosis of acute myocardial infarction. Am. J. Cardiol. 36:433–437, 1975.

    PubMed  CAS  Google Scholar 

  12. Maroko, P.R., Kjekshus, J.K., Sobel, B.E., Braunwald, E., et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82, 1971.

    Google Scholar 

  13. Shell, W.E., Kjekshus, J.K., and Sobel, B.E. Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J. Clin. Invest. 50:2614–2625, 1971.

    PubMed  CAS  Google Scholar 

  14. Roberts, R., Henry, P.D., and Sobel, B.E. An improved basis for enzymatic estimation of infarct size. Circulation 52:743–754, 1975.

    PubMed  CAS  Google Scholar 

  15. Cairns, J.A., Missirlis, E., and Fallen, E.L. Myocardial infarction size from serial CPK: Variability of CPK serum entry ratio with size and model of infarction. Circulation 58:1143–1153, 1978.

    PubMed  CAS  Google Scholar 

  16. Reimer, K.A., Hackel, D.B., Ideker, R.E., et al. Comparison of enzymatic and anatomic estimates of myocardial infarct size in man. Clin. Res. 31:214A, 1983. (Abstract)

    Google Scholar 

  17. Bleifeld, W., Mathey, D., Hanrath, P., Buss, G., and Effert, S. Infarct size estimated from serial serum creatine phosphokinase in relation to left ventricular hemodynamics. Circulation 55:303–311, 1977.

    PubMed  CAS  Google Scholar 

  18. Sammel, N.L., Stuckey, J.G., Brandt, P.W.T., and Norris, R.M. Comparison of enzymatic with cineangiocardiographic estimations of myocardial infarct size. Br. Heart’ 43:609–616, 1980.

    CAS  Google Scholar 

  19. Morrison, J., Coromilas, J., Munsey, D., et al. Correlation of radionuclide estimates of myocardial infarction size and release of creatine kinase-MB in man. Circulation 62:277–287, 1980.

    PubMed  CAS  Google Scholar 

  20. Rogers, W J., McDaniel, H.G., Smith, L.R., Mantle, J.A., Russell, R.O., Jr., and Rackley, C.E. Correlation of angiographic estimates of myocardial infarct size and accumulated release of creatine kinase MB isoenzyme in man. Circulation 56:199–205, 1977.

    PubMed  CAS  Google Scholar 

  21. Swain, J.L., Cobb, F.R., McHale, P.A., and Roe, C.R. Nonlinear relationship between creatine kinase estimates and histologic extent of infarction in conscious dogs: Effects of regional myocardial blood flow. Circulation 62:1239–1247, 1980.

    PubMed  CAS  Google Scholar 

  22. Grande, P., Hanson, B.F., Christiansen, C., and Naestoft, J. Estimation of acute myocardial infarct size in man by serum CK-MB measurements. Circulation 65:756–764, 1982.

    PubMed  CAS  Google Scholar 

  23. Vatner, S.F., Baig, H., Manders, W.T., and Maroko, P.R. Effects of coronary artery reperfusion on myocardial infarct size calculated from creatine kinase. J. Clin. Invest. 61:1048–1056, 1978.

    PubMed  CAS  Google Scholar 

  24. Hearse, DJ., Garlick, P.B., Humphrey, S.M., and Shillingford, J.P. The effect of drugs on enzyme release from the hypoxic myocardium. Eur. J. Cardiol. 7:421–436, 1978.

    PubMed  CAS  Google Scholar 

  25. Muller, J.E., Maroko, P.R., and Braunwald, E. Evaluation of precordial electrocardiographic mapping as a means of assessing changes in myocardial ischemic injury. Circulation 52:16–27, 1975.

    PubMed  CAS  Google Scholar 

  26. Hillis, L.D., Askenazi, J., Braunwald, E., et al. Use of changes in the epicardial QRS complex to assess interventions which modify the extent of myocardial necrosis following coronary artery occlusion. Circulation 54:591–598, 1976.

    PubMed  CAS  Google Scholar 

  27. Wickline, S.A. and McNamara, J J. Vectorcardiographic quantification of infarct size in baboons. Circulation 57:910–920, 1978.

    PubMed  CAS  Google Scholar 

  28. Wagner, G.S., Freye, CJ., Palmeri, S.T., et al. Evaluation of a QRS scoring system for estimat-ing myocardial infarct size. I. Specificity and observer agreement. Circulation 65:342–347, 1982.

    PubMed  CAS  Google Scholar 

  29. Ideker, R.E., Wagner, G.S., Ruth, W.K., et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. II. Correlation with quantitative anatomic findings for anterior infarcts. Am. J. Cardiol. 49:1604–1614, 1982.

    PubMed  CAS  Google Scholar 

  30. Roark, S.F., Ideker, R.E., Wagner, G.S., et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. III. Correlation with quantitative anatomic findings for inferior infarcts. Am. J. Cardiol. 51:382–389, 1983.

    PubMed  CAS  Google Scholar 

  31. Buja, L.M., Tofe, AJ., Kulkari, P.V., et al. Sites and mechanisms of localization of technetium-99m phosphorous radiopharmaceuticals in acute myocardial infarcts and other tissues. J. Clin. Invest. 60:724–740, 1977.

    PubMed  CAS  Google Scholar 

  32. Stokely, E.M., Buja, L.M., Lewis, S.E., et al. Measurement of acute myocardial infarcts in dogs with 99 m Tc-stannous pyrophosphate scintigrams. J Nucl. Med. 17:1–5, 1975.

    Google Scholar 

  33. Willerson,J.T., Parkey, R.W., Stokely, E.M., et al. Infarct sizing with technetium-99m stannous pyrophosphate scintigraphy in dogs and man; relationship between scintigraphic and precordial mapping estimates of infarct size in patients. Cardiovasc. Res. 11:291–298, 1977.

    PubMed  CAS  Google Scholar 

  34. Holman, B.L., Chisholm, R J., and Braunwald, E. The prognostic implications of acute myocardial infarct scintigraphy with 99 mTc-pyrophosphate. Circulation 57:320–326, 1978.

    PubMed  CAS  Google Scholar 

  35. Rude, R.E., Parkey, R.W., Bonte, FJ., et al. Clinical implications of the technetium-99m stannous pyrophosphate myocardial scintigraphic “doughnut” pattern in patients with acute myocardial infarcts. Circulation 59:721–730, 1979.

    PubMed  CAS  Google Scholar 

  36. Willerson, J.T. Can Acute Myocardial Infarcts Be Sized Accurately with Technetium-99m Stannous Pyrophosphate? In Current Controversies in Cardiovascular Disease, Rapaport, E, (ed.). Philadelphia: Saunders, 1980 pp. 235–246.

    Google Scholar 

  37. Lewis, M., Buja, L.M., Saffer, S., et al. Experimental infarct sizing using computer processing and a three-dimensional model. Science 197:167–169, 1977.

    PubMed  CAS  Google Scholar 

  38. Marcus, M.L., Tomanek, RJ., Ehrhardt, J.C., Kerber, R.E., Brown, D.D., and Abboud, F.M. Relationships between myocardial perfusion, myocardial necrosis, and technetium-99m pyrophosphate uptake in dogs subjected to sudden coronary occlusion. Circulation 54:647–653, 1976.

    PubMed  CAS  Google Scholar 

  39. Gewirtz, H., Beller, G.A., Strauss, H.W., et al. Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 59:707–713, 1979.

    PubMed  CAS  Google Scholar 

  40. Wackers, F.J.T., Sokole, E.B., Samson, G., et al. Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N. Engl. J Med. 295:1–5, 1976.

    PubMed  CAS  Google Scholar 

  41. Pohost, G.M., Zir, L.M., Moore, R.H., McKusick, K.A., Guiney, T.E., and Beller, G.A. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 55:294–302, 1977.

    PubMed  CAS  Google Scholar 

  42. Smitherman, T.C., Osborn, R.C., Jr., and Nasahara, K.A. Serial myocardial scintigraphy after a single dose of thallium-201 in men after acute myocardial infarction. Am. J. Cardiol. 42:177–182, 1978.

    PubMed  CAS  Google Scholar 

  43. Rigo, P., Murray, M., Strauss, H.W., et al. Left ventricular function in acute myocardial infarction evaluated by gated scintiphotography. Circulation 50:678–684, 1974.

    PubMed  CAS  Google Scholar 

  44. Reduto, L.A., Berger, H J., Cohen, L.S., Gottschalk, A., and Zaret, B.L. Sequential radionuclide assessment of left and right ventricular performance after acute transmural myocardial infarction. Ann. Int. Med. 89:441–447, 1978.

    PubMed  CAS  Google Scholar 

  45. Adams, D.F., Hessel, S J., Judy, P.F., Stein, J.A., and Abrams, H.L. Computed tomography of the normal and infarcted myocardium. Am. J. Roentogenol 126:786–791, 1976.

    CAS  Google Scholar 

  46. Gray, W.R.,Jr., Parkey, R.W., Buja, L.M., et al. Computed tomography: In vitro evaluation of myocardial infarction. Radiology 122:511–513, 1977.

    PubMed  Google Scholar 

  47. Weiss, E.S., Ahmed, S.A., Welch, MJ., Williamson, J.R., Ter-Pogossian, M.M., and Sobel, B.E. Quantification of infarction in cross sections of canine myocardium in vivo with positron emission transaxial tomography and 11C-palmitate. Circulation 55:66–73, 1977.

    PubMed  CAS  Google Scholar 

  48. Geltman, E.M., Markham, J., Welch, M J., TerPogossian, M.M., Roberts, R., and Sobel B.E. Detection and quantification of nontransmural infarction by metabolic imaging with position emission tomography. Clin. Res. 28:172A, 1980. (Abstract)

    Google Scholar 

  49. Hillis, L.D., Fishbein, M.C., Braunwald, E., and Maroko, P.R. The influence of the time interval between coronary artery occlusion and the administration of hyaluronidase on salvage of ischemic myocardium in dogs. Circ. Res. 41:2631, 1977.

    Google Scholar 

  50. Ganz, W., Buchbinder, N., Marcus, H., et al. Intracoronary thrombolysis in evolving myocardial infarction. Am. Heart J. 101:4–13, 1981.

    PubMed  CAS  Google Scholar 

  51. Miura, M., Thomas, R., Ganz, W., et al. The effect of delay in propranolol administration on reduction of myocardial infarct size after experimental coronary artery occlusion in dogs. Circulation 59:1148–1157, 1979.

    PubMed  CAS  Google Scholar 

  52. Norris, R.M., Clarke, E.D., Sammel, N.L., Smith, W.M., and Williams, B. Protective effect of propranolol in threatened myocardial infarction. Lancet 2:907–209, 1978.

    PubMed  CAS  Google Scholar 

  53. Maroko, P.R., Libby, P., Ginks, W.R., et al. Coronary artery reperfusion. I. Early effects on local myocardial function and the extent of myocardial necrosis. J. Clin. Invest. 51:2710–2716, 1972.

    PubMed  CAS  Google Scholar 

  54. Ginks, W.R., Sybers, H.D., Maroko, P.R., Covell, J.W., Sobel, B.E., and Ross, J., Jr. Coronary artery reperfusion. II. Reduction of myocardial infarct size at’ one week after coronary occlusion. J. Clin. Invest. 51:2717–2723, 1972.

    PubMed  CAS  Google Scholar 

  55. Althaus, U., Janett, J., Scholl, E., and Riedwyl, H. Effects of myocardial revascularization following acute coronary occlusion in pigs. Eur. J. Clin. Invest: 6:71–15, 1976.

    Google Scholar 

  56. Reimer, K.A., Lowe, J.E., Rasmussen, M.M., and Jennings, R.B. The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794, 1977.

    PubMed  CAS  Google Scholar 

  57. Kloner, R.A., Ganote, C.E., and Jennings, R.B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54:1496–1508, 1974.

    PubMed  CAS  Google Scholar 

  58. Bresnahan, G.F., Roberts, R., Shell, W.E., and Ross, J., Jr., and Sobel, B.E. Deleterious effects due to hemorrhage after myocardial reperfusion. Am. J. Cardiol. 33:82–86, 1974.

    PubMed  CAS  Google Scholar 

  59. Yusuf, S., Ramsdale, D., Peto, R., et al. Early intravenous atenolol in suspected acute myocardial infarction: Preliminary report of a randomized trial. Lancet 2:273–276, 1980.

    PubMed  CAS  Google Scholar 

  60. DeWood, M.A., Spores, J., Notske, R., et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 303:897–902, 1980.

    PubMed  CAS  Google Scholar 

  61. Phillips, S.J., Kongtahworn, C., Zeff, R.H., et al. Emergency coronary artery revascularization: A possible therapy for acute myocardial infarction. Circulation 60:241–246, 1979.

    PubMed  CAS  Google Scholar 

  62. Rentrop, K.P., Blanke, H., Karsch, K.R., and Kreuzer, H. Initial experience with transluminal recanalization of the recently occluded infarct-related coronary artery in acute myocardial infarction—comparison with conventionally treated patients. Clin. Cardiol. 2:92–105, 1979.

    PubMed  CAS  Google Scholar 

  63. Rentrop, K.P., Blanke, H., Karsch, K.R., et al. Acute myocardial infarction intracoronary application of nitroglycerin and streptokinase. Clin. Cardiol. 2:354–363, 1979.

    PubMed  CAS  Google Scholar 

  64. Mathey, D., Kuck, K.H., Tilsner, V., Krebber, H.J., and Bleifeld, W. Nonsurgical coronary artery recanalization in acute transmural myocardial infarction. Circulation 63:489–497, 1981.

    PubMed  CAS  Google Scholar 

  65. Rentrop, P., Blanke, H., Karsch, K.R., Kaiser, H., Kostering, H., and Leitz, K. Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation 63:307–317, 1981.

    PubMed  CAS  Google Scholar 

  66. Vetrovec, G.W., Leinbach, R.C., Gold, H.K., and Cowley, M J. Intracoronary thrombolysis in syndromes of unstable ischemia: Angiographic and clinical results. Am. Heart J. 104:946–952, 1982.

    PubMed  CAS  Google Scholar 

  67. Bolli, R., Brandon, T.A., Luck, J.C., Miller, R.R., and Entman, M.L. Deleterious effects of incomplete myocardial reperfusion on ventricular arrhythmias.J. Am. Coll. Cardiol. 1:111–118, 1983.

    Google Scholar 

  68. Rentrop, K.P., Blanke, H., and Karsch, K.R. Effects of nonsurgical coronary reperfusion on the left ventricle in human subjects compared with conventional treatment. Am. J. Cardiol. 49:1–8, 1982.

    PubMed  CAS  Google Scholar 

  69. Meyer, J., Merx, W., Schmitz, H., et al. Percutaneous transluminal coronary angiography immediately after intracoronary streptolysis of transmural myocardial infarction. Circulation 66:905–913, 1982.

    PubMed  CAS  Google Scholar 

  70. Mathey, D.G., Rodewald, G., Rentrop, P., et al. Intracoronary streptokinase thrombolytic recanalization and subsequent surgical bypass of remaining atherosclerotic stenosis in acute myocardial infarction. Am. Heart]. 102:1194–1201, 1981.

    CAS  Google Scholar 

  71. Timmis, G.C., Gangadharan, V., Hanser, A.M., et al. Intracoronary streptokinase in clinical practice. Am. Heart J. 104:925–938, 1982.

    PubMed  CAS  Google Scholar 

  72. Cowley, Mj., Hastillo, A., Vetrovec, G.W., and Hess, M.L. Effects of intracoronary streptokinase in acute myocardial infarction. Am. Heart J. 102:1149–1158, 1982.

    Google Scholar 

  73. Leinbach, R.C. and Gold, H.K. Editorial: Regional streptokinase in myocardial infarction. Circulation 63:498–499, 1981.

    PubMed  CAS  Google Scholar 

  74. Schuler, G., Olshausen, K.V., Mehmel, H., et al. Intracoronary streptokinase in acute myocardial infarction: Assessment by T1–201 scintigraphy. Am. J. Cardiol. 47:493, 1981. (Abstract)

    Google Scholar 

  75. Ellis, S.G., Henschke, C.I., Sandor, T., Wynne, J., Braunwald, E., and Kloner, R.A. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J. Am. Coll. Cardiol. 1:1047–1055, 1983.

    PubMed  CAS  Google Scholar 

  76. Braunwald, E. and Kloner, R.A. Editorial: The stunned myocardium—prolonged, post- ischemic ventricular dysfunction. Circulation 66:1146–1149, 1982.

    PubMed  CAS  Google Scholar 

  77. Kennedy, J.W., Fritz, J.K., Ritchie, J.L., et al. Streptokinase in acute myocardial infarction: Western Washington randomized trial—protocol and progress report. Am. Heart] 104:899911, 1982.

    Google Scholar 

  78. Schmutzler, N., Heckner, F., Kortge, P., et al. On the thrombolytic therapy for recent myocar-dial infarction. Dtsch Med. Wochenschr. 91:581–587, 1966.

    PubMed  CAS  Google Scholar 

  79. European Cooperative Study Group for Streptokinase Treatment in Acute Myocardial Infarction. Streptokinase in acute myocardial infarction. N. Engl. J. Med. 301:797–802, 1979.

    Google Scholar 

  80. Schroder, R., Biamino, G., Leitner, E.R.V., et al. Intravenous short-term infusion of streptokinase in acute myocardial infarction. Circulation 67:536–548, 1983.

    PubMed  CAS  Google Scholar 

  81. Schmutzler, V.R., Fritze, E., and Gebauer, D. Fibrinolytic Therapy in Acute Myocardial Infarction. In Transactions of the Nineteenth Annual Symposium on Blood,Mammen, E.F., Anderson, G.F., Barnhart, M.I. (eds.). Stuttgart, Germany: F-K Schattauer Verlag, 1971, p. 211.

    Google Scholar 

  82. European Working Party. Streptokinase in recent myocardial infarction: A controlled multicentre trial. Br. Med. J. 3:325–331, 1971.

    Google Scholar 

  83. Spann, J.F., Sherry, S., Carabello, B., et al. High-dose, brief intravenous streptokinase early in acute myocardial infarction. Am. Heart J. 104:939–945, 1982.

    PubMed  CAS  Google Scholar 

  84. Mueller, H.S., Ayres, S.M., Religa, A., and Evans, R.G. Propranolol in the treatment of acute myocardial infarction. Effect on myocardial oxygenation and hemodynamics. Circulation 49:1078–1087, 1974.

    PubMed  CAS  Google Scholar 

  85. Vatner, S.F., Baig, H., Manders, W.T., Ochs, H., and Pagani, M. Effects of propranolol on regional myocardial function, electrograms and blood flow in conscious dogs with myocardial ischemia. J. Clin,Invest. 60:353–360, 1977.

    CAS  Google Scholar 

  86. Maroko, P.R., Libby, P., Covell, J.W., Sobel, B.E., Ross, J., Jr., and Braunwald, E. Precordial ST segment elevation mapping: An atraumatic method for assessing alterations in the extent of myocardial ischemic injury. Am. J. Cardiol. 29:223–230, 1972.

    PubMed  CAS  Google Scholar 

  87. Rasmussen, M.M., Reimer, K.A., Kloner, R.A., and Jennings, R.B. Infarct size reduction by propranolol before and after coronary ligation in dogs. Circulation 56:794–798, 1977.

    PubMed  CAS  Google Scholar 

  88. Pierce, W.S., Carter, D.R., McGavran, M.H., and Waldhausen, J.A. Modification of myocardial infarct volume: An experimental study in the dog. Arch. Surg. 107:682–687, 1973.

    PubMed  CAS  Google Scholar 

  89. Mueller, H.S., and Ayres, S.M. The role of propranolol in the treatment of acute myocardial infarction. Prog. Cardiovasc. Dis. 19:405–412, 1977.

    PubMed  CAS  Google Scholar 

  90. Gold, H.K., Leinbach, R.C., and Maroko, P.R. Propranolol-induced reduction of signs of ischemic injury during acute myocardial infarction. Am. J. Cardiol, 38:689–695, 1976.

    PubMed  CAS  Google Scholar 

  91. Pelides, LJ., Reid, D.S., Thomas, M., and Shillingford, J.P. Inhibition by ß-blockade of the ST segment elevation after acute myocardial infarction in man. Cardiovasc. Res. 6:295–301, 1972.

    PubMed  CAS  Google Scholar 

  92. Waagstein, F., and Hjalmarson, A.C. Effect of cardioselective beta-blockade on heart function and chest pain in acute myocardial infarction. Acta. Med. Scand. (Suppl.) 587:201–211, 1975.

    Google Scholar 

  93. Heikkila, J. and Nieminen, M.S. Failure of methylprednisolone to protect acutely ischemic myocardium: A contrast with subsequent betaadrenergic blockade in man. Chest 73:577–582, 1978.

    PubMed  CAS  Google Scholar 

  94. Peter, T., Norris, R.M., Clarke, E.D., et al. Reduction of enzyme levels by propranolol after acute myocardial infarction. Circulation 57:1091–1095,1978.

    PubMed  CAS  Google Scholar 

  95. Jurgensen, Hj., Frederiksen, J., Hansen, D.A., and Pedersen-Bjergaard, O. Limitation of myocardial infarct size in patients less than 66 years treated with alprenolol. Brit. Heart J. 45:583588, 1981.

    Google Scholar 

  96. Hjalmarson, A., Ariniego, R., Herlitz, J., et al. Limitation of infarct size in man by the betablocker metoprolol. Circulation 60(Suppl. II):II-164, 1979. (Abstract)

    Google Scholar 

  97. Muller, J., Roberts, R., Stone, P., et al. Failure of propranolol administration to limit infarct size in patients with acute myocardial infarction. Circulation 68 (Suppl. III):III-294, 1983. (Abstract)

    Google Scholar 

  98. Smith, E.R., Redwood, D.R., McCarron, W.F., and Epstein, S.E. Coronary artery occlusion in the conscious dog. Effects of alterations in arterial pressure produced by nitroglycerin, hemorrhage, and alpha-adrenergic agonists on the degree of myocardial ischemia. Circulation 47:51–57, 1973.

    PubMed  CAS  Google Scholar 

  99. Epstein, S.E., Kent, K.M., Goldstein, R.E., Borer, J.S., and Redwood, D.R. Reduction of ischemic injury by nitroglycerin during acute myocardial infarction. N. Engl. J. Med. 292:2935, 1975.

    Google Scholar 

  100. Gerry, J.L., Jr., Schaff, H.V., Kallman, C.H., and Flaherty, J.T. Effects of nitroglycerin on regional myocardial ischemia induced by atrial pacing in dogs. Circ. Res. 48:569–576, 1981.

    PubMed  CAS  Google Scholar 

  101. Oliva, P.B. and Breckenridge, J.C. Arteriographic evidence of coronary arterial spasm in acute myocardial infarction. Circulation 56:366–374, 1977.

    PubMed  CAS  Google Scholar 

  102. Maseri, A., L’Abbate, A., Baroldi, G., et al. Coronary vasospasm as a possible cause of myocardial infarction. N. Engl. J. Med. 299:1271–1277, 1978.

    PubMed  CAS  Google Scholar 

  103. Bussmann, W.D., Schofer, H., Kurita, A., and Ganz, W. Nitroglycerin in acute myocardial infarction. X. Effect of small and large doses of nitroglycerin in sigma ST segment deviation-experimental and clinical results. Clin. Cardiol. 2:106–112, 1979.

    PubMed  CAS  Google Scholar 

  104. Hillis, L.D., Davis, C., and Khuri, S.F. The effect of nitroglycerin and nitroprusside on intramural carbon dioxide tension during acute experimental myocardial ischemia in dogs. Circ. Res. 48:372–378, 1981.

    PubMed  CAS  Google Scholar 

  105. Hirshfeld, J.W., Jr., Borer, J.S., Goldstein, R.E., Barrett, MJ., and Epstein, S.E. Reduction in severity and extent of myocardial infarction when nitroglycerin and methoxamine are administered during coronary occlusion. Circulation 49:291–297, 1974.

    PubMed  CAS  Google Scholar 

  106. Jugdutt, B.I., Becker, L.C., Hutchins, G.M., Bulkley, B.H., Reid, P.R., and Kallman, C.H. Effect of intravenous nitroglycerin on collateral blood flow and infarct size in the conscious dog. Circulation 63:17–28, 1981.

    PubMed  CAS  Google Scholar 

  107. Fukuyama, T., Schechtman, K.B., and Roberts R. The effects of intravenous nitroglycerin on hemodynamics, coronary blood flow and morphologically and enzymatically estimated infarct size in conscious dogs. Circulation 62:1227–1238, 1980.

    PubMed  CAS  Google Scholar 

  108. Flaherty, J.T., Reid, P.R., Kelly, D.T., Taylor, D.R., Weisfeldt, M.L., and Pitt, B. Intravenous nitroglycerin in acute myocardial infarction. Circulation 51:132–139, 1975.

    PubMed  CAS  Google Scholar 

  109. Come, P.C., Flaherty, J.T., Baird, M.G., et al. Reversal by phenylephrine of the beneficial effects of intravenous nitroglycerin in patients with acute myocardial infarction. N. Engl. J. Med. 293:1003–1007, 1975.

    PubMed  CAS  Google Scholar 

  110. Flaherty, J.T., Come, P.C., Baird, M.G., et al. Effects of intravenous nitroglycerin on left ventricular function and ST segment changes in acute myocardial infarction. Br. Heart J. 38:612–621, 1976.

    PubMed  CAS  Google Scholar 

  111. Borer, J.S., Redwood, D.R., Levitt, B., et al. Reduction in myocardial ischemia with nitroglycerin or nitroglycerin plus phenylephrine administered during acute myocardial infarction. N. Engl. J. Med. 293:1008–1012, 1975.

    PubMed  CAS  Google Scholar 

  112. Chiche, P., Baligadoo, S J., and Derrida, J.P. A randomized trial of prolonged nitroglycerin infusion in acute myocardial infarction. Circulation 60 (Suppl. II):II-165, 1979. (Abstract)

    Google Scholar 

  113. Bussmann, W.D., Pasek, D., Seidel, W., Kaltenbach, M. Reduction of CK and CK-MB indexes of infarct size by intravenous nitroglycerin. Circulation 63:615–622, 1981.

    PubMed  CAS  Google Scholar 

  114. Becker, L.C., Bulkley, BJ., Pitt, B., et al. Enhanced reduction of thallium-201 defects in acute myocardial infarction by nitroglycerin treatment: Initial results of a prospective randomized trial. Clin. Res. 26:219A, 1978. (Abstract)

    Google Scholar 

  115. Flaherty, J.T., Becker, L.C., Weisfeldt, M.L., et al. Results of a prospective randomized clinical trial of intravenous nitroglycerin in acute myocardial infarction. Circulation 62(Suppl. III):III82, 1980. (Abstract)

    Google Scholar 

  116. Come, P.C., and Pitt, B. Nitroglycerin-induced severe hypotension and bradycardia in patients with acute myocardial infarction. Circulation 54:624–628, 1976.

    PubMed  CAS  Google Scholar 

  117. Awan, N.A., Amsterdam, E.A., Vera, Z., De-Maria, A.N., Miller, R.R., and Mason, D.T. Reduction of ischemic injury by sublingual nitroglycerin in patients with acute myocardial infarction. Circulation 54:761–765, 1976.

    PubMed  CAS  Google Scholar 

  118. Franciosa, J.B., Guiha, N.M., Limas, CJ., Rodriquera, E., and Cohn, J.N. Improved left ventricular function during nitroprusside infusion in acute myocardial infarction. Lancet 1:650–654, 1972.

    PubMed  CAS  Google Scholar 

  119. Chatterjee, K., Parmley, W.W., Ganz, W., et al. Hemodynamic and metabolic responses to vasodilator therapy in acute myocardial infarction. Circulation 48:1183–1193, 1973.

    PubMed  CAS  Google Scholar 

  120. daLuz, P.L., Forrester, J.S., Wyatt, H.L., et al. Hemodynamic and metabolic effects of sodium nitroprusside on the performance and metabolism of regional ischemic myocardium. Circulation 52:400–407, 1975.

    CAS  Google Scholar 

  121. Chiariello, M., Gold, M.K., Leinbach, R.C., Davis, M.A., and Maroko, P.R. Comparison between the effects of nitroprusside and nitroglycerin on ischemic injury during acute myocardial infarction. Circulation 54:766–773, 1976.

    PubMed  CAS  Google Scholar 

  122. Mann, T., Cohn, P.F., Holman, B.L., Green, L.H., Markis, J.E., and Phillips, D.A. Effect of nitroprusside on regional myocardial blood flow in coronary artery disease. Circulation 57:732–738, 1978.

    PubMed  CAS  Google Scholar 

  123. daLuz, P.L. and Forrester, J.S. Influence of vasodilators upon function and metabolism of ischemic myocardium. Am. J. Cardiol. 37:581–587, 1976.

    CAS  Google Scholar 

  124. Weiner, L. Effects of Vasodilator Therapy on Regional Myocardial Ischemia. In Pathophysiology and Therapeutics of Myocardial Ischemia,Lefer, A.N., Kelliher, G.J., Rovetto, M J. (eds.). New York: Spectrum Publications, 1976, pp. 509–525.

    Google Scholar 

  125. Foerster, J.M., Vera, Z., Janzen, D., and Mason, D.T. Comparative evaluation of the efficacy of intravenous nitroglycerin and nitroprusside on reducing ventricular ischemia measured by vectorcardiographic ST magnitude in experimental porcine myocardial infarction. Am. J. Cardiol. 41:367, 1978. (Abstract)

    Google Scholar 

  126. Durrer, J.D., Lie, K.I., VanCapelle, J.F.L., and Durrer, D. Effect of sodium nitroprusside on mortality in acute myocardial infarction. N. Engl. J. Med. 306:1121–1128, 1982.

    PubMed  CAS  Google Scholar 

  127. Cohn, J.N., Franciosa, J.A., Francis, G.S., et al. Effect of short-term infusion of sodium nitroprusside on mortality rate in acute myocardial infarction complicated by left ventricular failure. N. Engl. J. Med. 306:1129–1135, 1982.

    PubMed  CAS  Google Scholar 

  128. Passamani, E.R. Editorial: Nitroprusside in myocardial infarction. N. Engl. J. Med. 306:11681169, 1982.

    Google Scholar 

  129. Cohn, J.N. and Archibald, D. Letter to the Editor. N. Engl. J. Med. 307:1343, 1982.

    Google Scholar 

  130. Wolf, R.A., Chaung, L.H., Muller, J.E., Kloner, R.A., and Braunwald E. Intravenous bovine testicular hyaluronidase depolymerizes myocardial hyaluronic acid in dogs with coronary artery occlusion. Circ. Res. 47:88–95, 1981.

    Google Scholar 

  131. Martins de Oliveira, J. and Levy, M.N. Effect of hyaluronidase upon the water content of ischemic myocardium. Am. Heart J. 60:106–109, 1960.

    Google Scholar 

  132. Rovetto, M J. Effect of hyaluronidase and methylprednisolone on myocardial function, glucose metabolism, and coronary flow in the isolated ischemic rat heart. Circ. Res. 41:373–379, 1977.

    PubMed  CAS  Google Scholar 

  133. Askenazi, J., Hillis, L.D., Diaz, P.E., Davis, M.A., Braunwald, E., and Maroko, P.R. The effects of hyaluronidase on coronary blood flow following coronary artery occlusion in the dog. Circ. Res. 40:566–571, 1977.

    PubMed  CAS  Google Scholar 

  134. Wetstein, L., Simson, M.B., Haselgrove,J., Barlow, C.H., and Harken, A.H. Mechanism of action of hyaluronidase in decreasing myocardial ischemia post coronary occlusion in the isolated perfused rabbit heart. Am. Heart J. 104:529–536, 1982.

    PubMed  CAS  Google Scholar 

  135. Szlavy, L., Adams, D.F., Hollenberg, N.K., and Abrams, H.L. Cardiac lymph and lymphatics in normal and infarcted myocardium. Am. Heart J. 100:323–331, 1980.

    PubMed  CAS  Google Scholar 

  136. Martins de Oliveira, J., Carballo, R.,.and Zimmerman, H.A. Intravenous injection of hyaluronidase in acute myocardial infarction; preliminary report of clinical and experimental observations. Am. Heart J. 57:712–722, 1959.

    Google Scholar 

  137. Britton, R.C. and Habif, D.V. Clinical uses of hyaluronidase: A current review. Surgery 33:917–942, 1953.

    PubMed  CAS  Google Scholar 

  138. Maroko, P.R., Hillis, L.D., Muller, J.E., Braunwald, E., et al. Favorable effects of hyaluronidase on electrocardiographic evidence of necrosis in patients with acute myocardial infarction. N. Engl. J. Med. 296:898–903, 1977.

    PubMed  CAS  Google Scholar 

  139. Cairns, J.A., Holder, D.A., Tanser, P.A., and Missirlis, E. Double blind trial of hyaluronidase for limitation of human infarct size. Clin. Res. 28:159A, 1980. (Abstract)

    Google Scholar 

  140. Saltissi, S., Codtart, DJ., Robinson, P.S., WebbPeppoe, M.M., and Croft, D.N. Effects of early administration of a highly purified hyaluronidase preparation (GL enzyme) on myocardial infarct size. Lancet 1:867–871, 1982.

    PubMed  CAS  Google Scholar 

  141. Flint, EJ., Cadigan, P J., DeGiovanni, J., Lamb, P., and Pentecost, B.L. Effect of GL enzyme (a highly purified form of hyaluronidase) on mor-tality after myocardial infarction. Lancet 1:871874, 1982.

    Google Scholar 

  142. Henderson, A., Campbell, R.W.F., and Julian, D.G. Effect of a highly purified hyaluronidase preparation (GL enzyme) on electrocardiographic changes in acute myocardial infarction. Lancet 1:874–876, 1982.

    PubMed  CAS  Google Scholar 

  143. Kloner, R.A., Braunwald, E., and Maroko, P.R. Long-term preservation of ischemic myocardium in the dog by hyaluronidase. Circulation 58:220–226, 1978.

    PubMed  CAS  Google Scholar 

  144. DeBoer, L.W.V., Strauss, H.W., Kloner, R.A., et al. Autoradiographic method of measuring the ischemic myocardium at risk: Effects of verapamil on infarct size after experimental coronary artery occlusion. Proc. Natl. Acad. Sci. USA 77:6119–6123, 1980.

    PubMed  CAS  Google Scholar 

  145. Henry, P.D., Shuchleib, R., Borda, L J., Roberts, R., Williamson, J.R., and Sobel, B.E. Effects of nifedipine on myocardial perfusion and ischemic injury in dogs. Circ. Res, 43:372380, 1978.

    Google Scholar 

  146. Brooks, W.W., Verrier, R.L., and Lown, B. Protective effect of verapamil on vulnerability to ventricular fibrillation during myocardial ischaemia and reperfusion. Cardiovasc. Res. 14:295–302,1980.

    PubMed  CAS  Google Scholar 

  147. Millard, R.W. Changes in cardiac mechanics and coronary blood flow of regionally ischemic porcine myocardium induced by diltiazem. Chest 78 (Suppl.):193–199, 1980.

    PubMed  CAS  Google Scholar 

  148. Weishaar, R., Ashikawa, K., and Bing, R J. Effect of diltiazem, a calcium antagonist, on myocardial ischemia. Am. J. Cardiol. 43:1137–1143, 1979.

    PubMed  CAS  Google Scholar 

  149. Rahamathulla, P.M., Ashraf, M., Schwartz, A., and Benedict, J. Effects of diltiazem on anoxic injury in the isolated rat heart. J. Am. Coll. Cardiol. 1:1081–1089, 1983.

    PubMed  CAS  Google Scholar 

  150. Nakamura, M., Kajwaya, Y., Yamada, A., et al. Effects of Diltiazem, a New Antianginal Drug on Myocardial Blood Flow Following Experimental Coronary Occlusion. In Ischemic Myocardium and Antianginal Drugs. Winbury, M.M., Abiko, Y., (eds.). New York: Raven Press, 1979, pp. 129–142.

    Google Scholar 

  151. Verdouw, P.D., Cate, FJ. ten, Hartog, M., Scheffer, M.G., and Stam, H. Intracoronary infusion of small doses of nifedipine lowers regional myocardial 02-consumption without altering regional myocardial function. Basic Res. Cardiol. 77:26–33, 1982.

    PubMed  CAS  Google Scholar 

  152. Jong, J.W. de, Harmsen, E., Tombe, P.P. de, and Keijzer, E. Nifedipine reduces adenine nucleotide breakdown in ischemic rat heart. Eur. J. Pharmacol. 81:89–96, 1982.

    PubMed  Google Scholar 

  153. Serruys, P.W., Harmsen, E., and Jong, J.W. de. Effect of intracoronary nifedipine on ATP breakdown during repeated pacing-induced an-gina. Fifth International Adalat Symposium. Berlin, 1982.

    Google Scholar 

  154. Theroux, P., Waters, D.D., Debaisieux, J.C., et al. Hemodynamic effects of calcium ion antagonists after acute myocardial infarction. Clin. Invest. Med. 3:81–85, 1980.

    PubMed  CAS  Google Scholar 

  155. Bussmann, W.D., Schofer, H., and Kaltenbach,M. Hemodynamic effects of nifedipine in acute myocardial infarction. Circulation 62(Suppl. III):III-82, 1980. (Abstract)

    Google Scholar 

  156. Carvalho, M.A., Aloon, L., Mello, M.G., Jr., Carneiro, R.D., and Ribeiro, L.G.T. Beneficial effects of verapamil on myocardial ischemic injury: Evaluation by precordial ST segment mapping. Clin. Res. 29:180A, 1981. (Abstract)

    Google Scholar 

  157. Bussmann, W.D., Seher, W., Brungras, M., and Klepzig, H. Reduktion der Ck-und CKMBInforktgrosse durch intravenose Gabe von Verapamil. Zeitschrift fur Kardiologie 71:164, 1982. (Abstract)

    Google Scholar 

  158. Muller, J., Morrison, J., Stone, P., et al. Nifedipine therapy for threatened and acute myocardial infarction: A randomized, double-blind comparison. Circulation 68 (Suppl. III):III-120, 1983. (Abstract)

    Google Scholar 

  159. Opie, L.H., Bruyneel, K., and Owen, P. Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Circulation 52:49–57,1975.

    PubMed  CAS  Google Scholar 

  160. Rogers, W.J., Segall, P.H., McDaniel, H.G., Mantle, J.A., Russell, R.O., Jr., and Rackley, C.E. Prospective randomized trial of glucoseinsulin-potassium in acute myocardial infarction: Effects on myocardial hemodynamics, substrates, and rhythm. Am. J. Cardiol. 43:801–809, 1979.

    PubMed  CAS  Google Scholar 

  161. Mjos, O.D., Kjekshus, J.K., and Lekven, J. Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J. Clin. Invest. 53:1290–1299, 1974.

    PubMed  CAS  Google Scholar 

  162. Kurien, V.A., Yates, P.A., and Oliver, M.F. The role of free fatty acids in the production of ventricular arrhythmias after acute coronary artery occlusion. Eur. J. Clin. Invest. 1:225–241, 1971.

    PubMed  CAS  Google Scholar 

  163. Rogers, W.J., Russell, R.O., Jr., McDaniel, H.G., and Rackley, C.E. Acute effects of glucose-insulin-potassium infusion on myocardial substrates, coronary blood flow and oxygen consumption in man. Am. J. Cardiol. 40:421–428, 1977.

    PubMed  CAS  Google Scholar 

  164. Oliver, M.F., Rowe, Mj., Luxton, M.R., Miller, N.E., and Neilson, J.M. Brief communication: Effect of reducing circulating free fatty acids on ventricular arrhythmias during myocardial infarction and on ST-segment depression during exercise-induced ischemia. Circulation 53 (Suppl. I):I-210-I-212, 1976.

    Google Scholar 

  165. Obeid, A.I., Verrier, R.L., and Lown, B. Influence of glucose, insulin and potassium on vulnerability to ventricular fibrillation in the canine heart. Circ. Res. 43:601–608, 1978.

    PubMed  CAS  Google Scholar 

  166. Burke, W.M., Asokan, S.K., Moschos, C.B., 01dewurtel, H.A., and Regan, T J. Effects of glucose and non-glucose infusions on myocardial potassium ion transfers and arrhythmias during ischemia. Am. J. Cardiol. 24:713–722, 1969.

    PubMed  CAS  Google Scholar 

  167. Wildenthal, K., Mierzwiak, D.S., and Mitchell, J.H. Acute effects of increased serum osmolality on left ventricular performance. Am. J. Physiol. 216:898–904, 1969.

    PubMed  CAS  Google Scholar 

  168. Calva, E., Mujica, A., Bisteni, A., and Sodi-Pallares, D. Oxidative phosphorylation in cardiac infarct: Effect of glucose-KCI-insulin solution. Am. J. Physiol. 209:371–375, 1965.

    PubMed  CAS  Google Scholar 

  169. Maroko, P.R., Libby, P., Sobel, B.E., et al. Effect of glucose-insulin-potassium infusion on myocardial infarction following experimental coronary artery occlusion. Circulation 45:11601175, 1972.

    Google Scholar 

  170. Prather, J.W., Russell, R.O., Jr., Mantle, J.A., McDaniel, H.G., and Rackley, C.E. Metabolic consequences of glucose-insulin-potassium infusion in treatment of acute myocardial infarction. Am. J. Cardiol. 38:95–99, 1976.

    PubMed  CAS  Google Scholar 

  171. Rogers, W.J., Stanley, A.W., Jr., Breinig, J.B., et al. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. Am. Heart J. 92:441–454, 1976.

    PubMed  CAS  Google Scholar 

  172. Rogers, W.J., Mantle, J.A., McDaniel, H.G., Russell, R.O., Jr., and Rackley, C.E. Prospective randomized trial of glucose-insulin-potassium in acute myocardial infarction. Circulation 60 (Suppl. II):II-165, 1979. (Abstract)

    Google Scholar 

  173. Whitlow, P.L., Rogers, W J., Smith, L.R., et al. Enhancement of left ventricular function by glucose-insulin-potassium infusion in acute myocardial infarction. Am. J. Cardiol. 49:811–820, 1982.

    PubMed  CAS  Google Scholar 

  174. Stanley, A.W., Moraski, R.E., Russell, R.O., Jr., et al. Effects of glucose-insulin-potassium on myocardial substrate availability and utilization in stable coronary artery disease. Am. J. Cardiol. 36:929–937, 1975.

    PubMed  Google Scholar 

  175. Stanley, A.W.H., Jr., Prather, J.W., Snow, R.M., Cooper, T.B., and Royals, M.E. Glucoseinsulin-potassium, acute myocardial infarction and patient mortality: Results from an ongoing prospective randomized study. Clin. Res. 27:734A, 1979. (Abstract)

    Google Scholar 

  176. Heng, M.K., Norris, R.M., Singh, B.N., and Barrat-Boyes, C. Effects of glucose and glucoseinsulin-potassium on haemodynamics and en-zyme release after acute myocardial infarction. Br. Heart J. 39:748–757, 1977.

    PubMed  CAS  Google Scholar 

  177. Spath, J.A., Jr., Lane, D.L., and Lefer, A.M. Protective action of methylprednisolone on the myocardium during experimental myocardial ischemia in the cat. Circ. Res. 35:44–51, 1974.

    PubMed  CAS  Google Scholar 

  178. Welman, E., Selwyn, A.P., and Fox, K.M. Lysosomal and cytosolic enzyme release in acute myocardial infarction: Effects of methylprednisolone. Circulation 59:730–733, 1979.

    PubMed  CAS  Google Scholar 

  179. Masters, T.N., Harbold, N.B., Jr., Hall, D.G., et al. Beneficial metabolic effects of methylprednisolone sodium succinate in acute myocardial ischemia. Am. J. Cardiol. 37:557–563, 1976.

    PubMed  CAS  Google Scholar 

  180. Opdyke, D.F., Lambert, A., Stoerk, H.C., Zanetti, M.E., and Kuna, S. Failure to reduce the size of experimentally produced myocardial infarcts by cortisone treatment. Circulation 8:544–548, 1953.

    PubMed  CAS  Google Scholar 

  181. Kloner, R.A., Fishbein, M.C., Lew, H., Maroko, P.R., and Braunwald, E. Mummification of the infarcted myocardium by high dose corticosteroids. Circulation 57:56–63, 1978.

    PubMed  CAS  Google Scholar 

  182. Hammerman, H., Kloner, R.A., Hale, S., Schoen, F J., and Braunwald, E. Dose-dependent effects of short-term methylprednisolone on myocardial infarct extent, scar formation, and ventricular function. Circulation 68:446–452, 1983.

    PubMed  CAS  Google Scholar 

  183. Libby, P., Maroko, P.R., Bloor, C.M., Sobel, B.E., and Braunwald, E. Reduction of experimental myocardial infarct size by corticosteroid administration. j Clin. Invest. 52:599–607, 1973.

    PubMed  CAS  Google Scholar 

  184. Smith, G.T., Geary, G., Ruf, W., Fore, F.N., Oyama, M., and McNamara, J J. Quantitative effect of a single large dose of methylprednisolone on infarct size in baboons. Cardiovasc. Res. 14:408–418, 1980.

    PubMed  CAS  Google Scholar 

  185. Morrison, J., Reduto, L., Pizzarello, R., Geller, K., Maley, T., and Gulotta, S. Modification of myocardial injury in man by corticosteroid administration. Circulation 53 (Suppl. I):I-200-I-204, 1976.

    Google Scholar 

  186. Selwyn, A.P., Fox, K.P., Welman, E., Jonathan, A., and Shillingford, J.P. Electrocardiographic precordial mapping in anterior myocardial infarction: The critical period for interventions as exemplified by methylprednisolone. Circulation 58:892–897, 1978.

    PubMed  CAS  Google Scholar 

  187. Roberts, R., DeMello, V., and Sobel, B.E. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation 53 (Suppl. I):I-204—I-206, 1976.

    Google Scholar 

  188. Madias, J.E. and Hood, W.B. Effects of methylprednisolone on the ischemic damage in patients with acute myocardial infarction. Circulation 65:1106–1113, 1982.

    PubMed  CAS  Google Scholar 

  189. Bulkley, B.H. and Roberts, W.C. Steroid ther-apy during acute myocardial infarction: A cause of delayed healing and of ventricular aneurysm. Am. J. Med. 56:244–250, 1974.

    PubMed  CAS  Google Scholar 

  190. Peters, R.W., Norman, A., Parmley, W.W., Emilson, B.B., Scheinman, M.M., and Cheitlin, M. Effect of therapy with methylprednisolone on the size of myocardial infarcts in man. Chest 73:483–488, 1978.

    PubMed  CAS  Google Scholar 

  191. Sievers, J., Johansson, B.W., and Nilsson, S. Corticosteroid therapy in acute myocardial infarction. Abstracts of the IV World Congress of Cardiology, 323–324, 1962.

    Google Scholar 

  192. Madias, J.E., Madias, N.E., and Hood, W.B., Jr. Precordial ST segment mapping: II. Effects of oxygen inhalation on ischemic injury in patients with acute myocardial infarction. Circulation 53:411–417, 1976.

    PubMed  CAS  Google Scholar 

  193. Kenmure, A.C.F., Murdoch, W.R., Beattie, A.D., Marshall, J.C.B., and Cameron, ATV. Circulatory and metabolic effects of oxygen in myocardial infarction. Br. Med. J. 4:360–364, 1968.

    PubMed  CAS  Google Scholar 

  194. Rawles, J.M. and Kenmure, A.C.F. Controlled trial of oxygen in uncomplicated myocardial infarction. Br. Med. J. 1:1121–1123, 1976.

    PubMed  CAS  Google Scholar 

  195. Maroko, P.R., Radvany, P., Braunwald, E., and Hale, S.L. Reduction of infarct size by oxygen inhalation following acute coronary occlusion. Circulation 52:360–368, 1975.

    PubMed  CAS  Google Scholar 

  196. Ribeiro, L.G.T., Louie, E.K., Davis, M.A., and Maroko, P.R. Augmentation of collateral blood flow to the ischemic myocardium by oxygen inhalation following experimental coronary artery occlusion. Cardiovasc. Res. 13:160–166 1979.

    Google Scholar 

  197. Wolfe, W.G. and DeVries, W.C. Oxygen toxicity. Ann. Rev. Med. 26:203–217, 1975.

    CAS  Google Scholar 

  198. DeWood, M.A., Spores, J., Notske, R.N., et al. Medical and surgical management of myocardial infarction. Am. J. Cardiol. 44:1356–1364, 1979.

    PubMed  CAS  Google Scholar 

  199. Spotnitz, H.M., Covell, J.W., Ross, J., Jr., and Braunwald, E. Left ventricular mechanics and oxygen consumption during arterial counterpulsation. Am. J. Physiol. 217:1352–1358, 1969.

    PubMed  CAS  Google Scholar 

  200. Maroko, P.R., Bernstein, E.F., Libby, P., et al. Effects of intraaortic balloon counterpulsation on the severity of myocardial ischemic injury following acute coronary occlusion: Counter-pulsation and myocardial injury. Circulation 45:1150–1159,1972.

    PubMed  CAS  Google Scholar 

  201. DeLaria, G.A., Johansen, K.H., Sobel, B.E., Sybers, H.D., and Bernstein, E.F. Delayed evolution of myocardial ischemic injury after intraaortic balloon counterpulsation. Circulation 50 (Suppl. II):II-242–248, 1974.

    Google Scholar 

  202. Sugg, W.L., Webb, W.R., and Ecker, R.R. Reduction of extent of myocardial infarction by counterpulsation. Ann. Thorac. Surg. 7:310–316, 1969.

    PubMed  CAS  Google Scholar 

  203. Roberts, A J., Alonso, D.R., Combes, J.R., et al. Role of delayed intraaortic balloon pumping in treatment of experimental myocardial infarction. Am. J. Cardiol. 41:1202–1208, 1978.

    PubMed  CAS  Google Scholar 

  204. Ergin, M.A., Dastgir, G., Butt, K.M.H., and Stuckey, J.H. Prolonged epicardial mapping of myocardial infarction: The effects of propranolol and intraaortic balloon pumping following coronary artery occlusion. J. Thor. Cardiovasc. Surg. 72:892–899, 1976.

    CAS  Google Scholar 

  205. Laas, J., Campbell, L.D., Takanaski, Y., Pick, R.L., and Replogle, R.L. Failure of intraaortic balloon pumping to reduce experimental myocardial infarct size in swine. J. Thorac. Cardiovasc. Surg. 80:85–93, 1980.

    CAS  Google Scholar 

  206. Haston, H.H. and McNamara, J J. The effects of intraaortic balloon counterpulsation on myocardial infarct size. Ann. Thorac. Surg. 28:335–341, 1979.

    PubMed  CAS  Google Scholar 

  207. Leinbach, R.C., Gold, H.K., Harper, R.W., Buckley, M J., and Austen, W.G. Early intraaortic balloon pumping for anterior myocardial in-farction without shock. Circulation 58:204–210, 1978.

    PubMed  CAS  Google Scholar 

  208. O’Rourke, M.F., Norris, R.M., Campbell, T J., Chang, V.P., and Sammel, N.L. Randomized controlled trial of intraaortic balloon counterpulsation in early myocardial infarction with acute heart failure. Am. J. Cardiol. 47:815–820, 1981.

    PubMed  Google Scholar 

  209. McCabe, J.C., Abel, R.M., Subramanian, V.A., and Gay, W.A., Jr. Complications of intraaortic balloon insertion and counterpulsation. Circulation 57:769–773, 1978.

    PubMed  CAS  Google Scholar 

  210. Bregman, D., Nichols, A.B., Weiss, M.B., Powers, E.R., Martin, E.C., and Casarella, W J. Per-cutaneous intra-aortic balloon insertion. Am. J. Cardiol. 46:261–264, 1980.

    PubMed  CAS  Google Scholar 

  211. Scheidt, S., Wilner, G., Mueller, H., et al. Intraaortic balloon counterpulsation in cardiogenic shock. Report of a cooperative clinical trial. N. Engl. J. Med. 288:979–984, 1973.

    PubMed  CAS  Google Scholar 

  212. Scheidt, S. Editorial: Preservation of ischemic myocardium with intraaortic balloon pumping: Modern therapeutic intervention or primum non nocere? Circulation 58:211–214 1978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Stone, P.H., Rude, R.E., Muller, J.E., Braunwald, E. (1985). Current Status of Interventions Designed to Limit Infarct Size. In: Levine, H.J., Gaasch, W.H. (eds) The Ventricle. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2599-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2599-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9628-7

  • Online ISBN: 978-1-4613-2599-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics