Advertisement

Cell-Cell Signalling

  • Jacques Maclouf
Part of the Prostaglandins, Leukotrienes, and Cancer book series (PLAC, volume 1)

Abstract

The concept of cellular cooperation has long been recognized as being fundamental in several physio-pathological systems such as: 1) In immunology, B-cells require interaction with T-cells to induce antibody responses. 2) The development of atherosclerotic processes involves interactions between blood cells and vascular cells. 3) Inflammatory reactions necessitate a cooperation among various cell types. 4) Tumor cell metastases are governed by an inter-relation of malignant cells with blood platelets, leukocytes, red blood cells ... followed by interactions with vascular endothelium. Although it seems reasonable to assume that cellular cooperation needs cell-cell signalling in the initiation and/or amplification of such processes, little is known about the biochemical nature of these events. For example, cell-cell recognition can be explained by membrane interactions such as between glycoproteins (or glycoproteins and structural macromolecules) followed by metabolic events of one cell that can turn on or off an activation of neighbouring cells. In this respect, autacoids (e.g., icosanoids) may provide valuable clues for cell-cell signalling.

Keywords

Arachidonic Acid Arachidonic Acid Metabolism Calcium Ionophore A23187 Tumor Cell Metastasis Eicosa Tetraenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spagnuolo PJ, Ellner JJ, Hassid A, Dunn MJ: Thromboxane A2 mediated augmented polymorphonuclear leukocytes adhesiveness. J. Clin. Invest. (66): 406–414, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett JS, Vilaire G, Burch JW: A role for prostaglandins and thromboxanes in the exposure of platelet fibrinogen receptor. J. Clin. Invest. (68): 981–987, 1981.PubMedCrossRefGoogle Scholar
  3. 3.
    Bunting S, Gryglewski R, Moncada S, Vane JR: Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins (12): 897–913, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Marcus AJ, Weksler BB. Jaffe EA, Broekman MJ: Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J. Clin. Invest. (66): 979–986, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Fitzgerald GA, Baash AR, Oates JA, Pederson AK: Endogenous prostacyclin biosynthesis and platelet function during selective inhibition of thromboxane synthase in man. J. Clin. Invest. (72): 1336–1343, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Fitzgerald GA, Smith B, Pederson AK, Brash AR: Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N. Eng. J. Med. (310): 1065–1068, 1984.CrossRefGoogle Scholar
  7. 7.
    Goldyne ME and Stobo JD: Human monocytes synthesize eicosanoids from T lymphocyte-derived arachidonic acid. Prostaglandins (24): 623–630, 1982.PubMedCrossRefGoogle Scholar
  8. 8.
    Borgeat P, Picard S, Vallerand P, Sirois P: Transformation of arachidonic acid in leukocytes. Isolation and structural analysis of a novel dihydroxy derivative. Prostaglandins Med. (6): 557–570, 1980.CrossRefGoogle Scholar
  9. 9.
    Maclouf J, Fruteau de Laclos B, Borgeat P: Stimultion of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc. Natl. Acad. Sci. USA (79): 6042–6046, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Borgeat P, Fruteau de Laclos B, Maclouf J: New concepts in the modulation of leukotriene biosynthesis. Biochem. Pharmacol. (32): 381–387, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Marcus A, Broekman MJ, Safier LB, Ullman HL, Islam N, Serhan CN, Rutherford LE, Morchan HM, Weissmann G: Formation of leukotriene and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem. Biophys. Res. Commun. (109): 130–137, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    Marcus AJ, Safier LB, Ullman HL, Broekman MJ, Islam N, Oglesby TD, Gorman RR: 12S, 20-dihydroxyicosatetraenoic acid: A new icosanoid synthesized by neutrophils from 12S-hydroxyicosa-tetraenoic acid produced by thrombin- or collagen-stimulated platelets. Proc. Natl. Acad. Sci. USA (81): 903–907, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Wong PY-K, Westlund P, Hamberg M, Granstrom E, Chao PH-W, Samuelsson B: Hydroxylation of 12L-hydroxy-5,8,10,14-eicosa-tetraenoic acid in human polymorphonuclear leukocytes. J. Biol. Chem. (259):2683–2686, 1984.PubMedGoogle Scholar
  14. 14.
    Sfaer J, Baud L, Bens M, Podjarny E, Schlondorff D, Ardaillou R, Sraer JD: Glomeruli cooperate with macrophages in converting arachidonic acid to prosstaglandins and hydroxyeicosatetraenoic acids. Prostaglandins Leukotrienes Med.Google Scholar
  15. 15.
    Weksler BB, Brower M, de Roque R, Jaffe EA, Tack-Goldman K: Alterations in endothelial cell function induced by proteases from human polymorphonuclear leukocytes. Blood (60):225a (abstract), 1982.Google Scholar
  16. 16.
    Honn KV, Cicone B, Skoff A: Prostacyclin: A potent antimetastatic agent. Science (212):1270–1272, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Wautier JL, Pintigny D, Wautier MP, Maclouf J, Corvazier E, Caen JP: Release of prostacyclin after erythrocyte adhesion to endothelial cells. Thromb. Haemostas. (50):241 (abstract) 1983.Google Scholar
  18. 18.
    Smith MJH: Biological activities of leukotriene B4. Adv. Prostaglandin, Thromboxane, Leukotriene Res. (9):283–292, 1982.Google Scholar
  19. 19.
    Yoshimoto T, Miyamoto Y, Ochi K, Yamamoto S: Arachidonate 12-lipoxygenase of porcine leukocyte with activity for 5-hydroxy-eicosatetraenoic acid. Biochim. Biophys. Acta (713):638–646, 1982.PubMedGoogle Scholar
  20. 20.
    Honn KV, Busse WD, Sloane BF: Prostacyclin and thromboxanes. Implications for their role in tumor cell metastasis. Biochem. Pharmacol. (32):1–11, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Meijer L, Guerrier P, Maclouf J: Arachidonic acid, 12- and 15-hydroxyeicosatetraenoic acids, eicosapentaenoic acid and phospholipase A2 induce starfish oocyte maturation. Dev. Biol. (In press).Google Scholar
  22. 22.
    Gualde N, Rabinovitch H, Fredon D, Rigaud M: Effects of 15-hydroperoxy-eicosatetraenoic acid on human lymphocyte sheep erythrocyte rosette formation and response to concanavalin A associated with HLA system. Eur. J. Immunol. (12): 773–777, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    Mexmain S, Gualde N, Aldigier JC, Motta C, Chable-Rabinovitch H, Rigaud M: Specific binding of 15-HETE to lymphocytes. Effects on the fluidity of the plasmatic membranes. Prostaglandins, Leukotrienes Med.Google Scholar
  24. 24.
    Folco G, Grandstrom E, Kindahl H: Albumin stabilizes thromboxane A2. FEBS Lett. (82):321–324, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Wynalda MA, Fitzpatrick FA: Albumins stablize prostaglandin I2. Prostaglandins (20):853–861, 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Fitzpatrick FA, Morton DR, Wynalda MA: Albumin stabilizes leukotriene A4. J. Biol. Chem. (257):4680–4683, 1982.PubMedGoogle Scholar
  27. 27.
    Fitzpatrick FA, Wynalda MA: Albumin-lipid interactions: Prostaglandin stability as a probe for characterization binding sites on vertebrate albumins. Biochemistry (20): 6219–6134, 1981.CrossRefGoogle Scholar
  28. 28.
    Fitzpatrick FA, Haeggstrom J, Granstrom E, Samuelsson B: Metabolism of leukotriene A4 by an enzyme in blood plasma: A possible leukotactic mechanism. Proc. Natl. Acad. Sci. USA (80):5425–5429, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Jacques Maclouf

There are no affiliations available

Personalised recommendations