Advertisement

Lipid Analysis of Aortic Tissue from Alloxan-Diabetic Rats

  • David M. Roth
  • Diane K. Reibel
  • Allan M. Lefer
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 46)

Abstract

Diabetics exhibit a higher risk of developing cardiovascular disease than the normal population (1). Recently, alterations in the cardiovascular actions of the eicosanoids have been implicated in the vascular disorders associated with diabetes mellitus (2). In this regard, we have shown that vascular tissue from diabetic animals exhibits increased reactivity towards endoperoxide analogs (3), platelet produced eicosanoids (4) and leukotrienes (5). We have also shown that vascular tissue from diabetic rats develop altered production of prostacyclin (3) and leukotrienes (6).

Keywords

Diabetic Group Diabetic Animal Aortic Ring Aortic Tissue Plasma Cholesterol Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia MJ, McNamara PM, Gordon T, Kannel W: Morbidity and mortality in diabetics in the Framingham population. Diabetes (23):105–111, 1974.PubMedGoogle Scholar
  2. 2.
    Naveh-Floman N, Maisseiev 3: Prostanoids and thromboxane A2 involvement in diabetic retinopathy. Metab Pediat Syst Ophthal (6):321–325, 1982.Google Scholar
  3. 3.
    Roth DM, Reibel DK, Lefer AM: Vascular responsiveness and eicosanoid production in diabetic rats. Diabetologia (24):372–376, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Reibel DK, Roth DM, Lefer BL, Lefer AM: Hyperreactivity of coronary vasculature in platelet-perfused hearts from diabetic rats. Am 3 Physiol (245):H640-H645, 1983.Google Scholar
  5. 5.
    Roth DM, Reibel DK, Lefer AM: Altered coronary vascular responsiveness to leukotrienes in alloxan-diabetic rats. Circ Res (54):388–395, 1984.PubMedGoogle Scholar
  6. 6.
    Roth DM, Smith JB, Lefer AM: Leukotriene production in isolated tissues of diabetic rats. Prostaglandins Leukotrienes Med 1984.Google Scholar
  7. 7.
    Broderick R, Tulenko T: Cholesterol increases norepinephrine (NE) sensitivity in perfused rabbit femoral arteries. Fed Proc (42):1347, 1983.Google Scholar
  8. 8.
    Spector AA, Hoak JC, Fry GL, Denning GM, Stoll LL, Smith JB: Effect of fatty acid modification on prostacyclin production by cultured human endothelial cells. J Clin Invest (65):1003–1012, 1980.PubMedCrossRefGoogle Scholar
  9. 9.
    Raabo E, Terkildsen TC: On the enzymatic determination of blood glucose. Scand J Clin Lab Invest (12):402–408, 1960.PubMedCrossRefGoogle Scholar
  10. 10.
    Ingerman-Wojenski C, Silver MJ, Smith JB, Macarak E: Bovine endothelial cells in culture produce thromboxane as well as prostacyclin. J Clin Invest (67):1292–1296, 1981.PubMedCrossRefGoogle Scholar
  11. 11.
    Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol (37):911–917, 1959.PubMedCrossRefGoogle Scholar
  12. 12.
    Rudel LL, Morris MD: Determination of cholesterol using O-phthalaldehyde. J Lipid Res (14):364–386, 1973.PubMedGoogle Scholar
  13. 13.
    Bartlett GB: Phosphorous assay in column chromatography. J Biol Chem (234):466–468, 1959.PubMedGoogle Scholar
  14. 14.
    Harrison HE, Johnson M: Vascular prostacyclin release and metabolic derangement in diabetes. Horm Metab Res Suppl (11):43–49, 1981.PubMedGoogle Scholar
  15. 15.
    Silberbauer K, Schernthaner G, Sinzinger H, Piza-Katzer H, Winter M: Decreased vascular prostacyclin in juvenile-onset diabetes. N Engl J Med (300):366–367, 1979.PubMedGoogle Scholar
  16. 16.
    Wey H, Subbiah MTR: 6-keto-PGF, synthesis in diabetic rat aorta: effect of substrate concentration and cholesterol feeding. Proc Soc Biol Med (171):251–257, 1982.Google Scholar
  17. 17.
    Rogers SP, Larkins RG: Production of 6-oxo-PGF1 by rat aorta: influence of diabetes, insulin treatment, and caloric deprivation. Diabetes (30):935–939, 1981.PubMedGoogle Scholar
  18. 18.
    Landgraf-Leurs MMC, Landgraf R, Loy A, Weber PC, Herberg LL: Aggregation and thromboxane formation by platelets and vascular prostacyclin production from BB rats. An animal model for type 1 diabetes. Prostaglandins (24):37–47, 1982.Google Scholar
  19. 19.
    Galli C, Agradi E, Petroni A, Tremoli E: Differential effects of dietary fatty acids on the accumulation of arachidonic acid and its metabolic conversion through cyclooxygenase and lipoxygenase in platelets and vascular tissue. Lipids (16):165–172, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Holman RT, Johnson SB, Gerrard JM, Mauer SM, Kupcho-Sandberg S, Brown DM: Arachidonic acid deficiency in streptozotocin-induced diabetes. Proc Nat Acad Sci USA (80):2375–2379, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Sabine JR: Membrane homeostasis: Is there an optimum level of membrane cholesterol? Bioscience Rep (3):337–344, 1983.CrossRefGoogle Scholar
  22. 22.
    Yeagle PL: Cholesterol modulation of Na+ K+) — ATPase ATP hydrolyzing activity in the human erythrocyte. Biochem Biophys Acta (727):39–44, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • David M. Roth
  • Diane K. Reibel
  • Allan M. Lefer

There are no affiliations available

Personalised recommendations