Advertisement

Prostaglandin Endoperoxide Metabolism by the Human Carotid Artery

  • D. B. McNamara
  • D. S. Rush
  • M. D. Kerstein
  • J. A. Bellan
  • P. R. Mayeux
  • M. F. Adinolfi
  • A. L. Hyman
  • P. J. Kadowitz
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 46)

Abstract

Prostacyclin (PGI2) synthesis is associated with maintenance of normal vascular function, and a fall in human vascular PGI2 synthesis has been associated with atherosclerosis (1,2). It has been proposed that a decrease in PGI2 production results in the loss or impairment of the vascular defense mechanism against platelet deposition which might favor thrombosis and the progression of atherosclerosis (1). A decrease in bioassayable PGI2 production by vascular sections from fatty streak (pre-atherosclerotic) and advanced atherosclerotic lesions has been reported (3). Little if any information is available concerning the activity of prostacyclin synthetase in vascular tissue immediately adjacent to advanced atherosclerotic plaques. An increase or decrease in the PGI2 generating capacity of these adjacent areas could represent a protective mechanism against or a predisposing factor for, respectively, the progression of atherosclerotic disease into these areas.

Keywords

Synthetase Activity Fatty Streak Vascular Segment External Elastic Lamina Human Carotid Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinzinger H, Feigl W, Silberbauer K: Prostacyclin generation in atherosclerotic arteries. Lancet (2):469, 1979.PubMedCrossRefGoogle Scholar
  2. 2.
    Gryglewski RJ, Dembinska-Kiec A, Zmuda A, Gryglewski T: Prostacyclin and thromboxane A2 biosynthesis capacities of heart, arteries and platelets at various stages of experimental atherosclerosis in rabbits. Atherosclerosis (31):385–394, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Sinzinger H, Feigl W, Silberbauer K, Oppolzer R, Winter M, Auerswald W: Prostacyclin (PGI2)-generation by different types of human atherosclerotic lesions. Exp. Pathol. (Jena) (18):175–180, 1980.Google Scholar
  4. 4.
    She HS, McNamara DB, Spannhake EW, Hyman AL, Kadowitz PJ: Metabolism of prostaglandin endoperoxide by microsomes from cat lung. Prostaglandins (21):531–541, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Kerstein MD, Saroyan M, McMullen-Laird M, Hyman AL, Kadowitz PJ, McNamara DB: Metabolism of prostaglandins in human saphenous vein. J. Surg. Res. (35):91–100, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    McNamara DB, Hussey JL, Kerstein MD, Rosenson RJ, Hyman AL, Kadowitz PJ: Modulation of prostacyclin synthetase and unmasking of PGE2 isomerase in bovine coronary arterial microsomes. Biochem. Biophys. Res. Commun. (118):33–39, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Higgs EA, Moncada S, Vane JR, Caen JP, Michel H, Tobelem G: Effect of prostacyclin (PGI2) on platelet adhesion to rabbit arterial subendothelium. Prostaglandins (16):17–22, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    McNamara DB, Rush DS, Kerstein MD, Bellan JA, Mayeux PR, Adinolfi AL, Hyman AL, Kadowitz PJ: Prostacyclin synthetase activity in normal and early and advanced atherosclerotic human carotid artery. Prostaglandins (submitted), 1984.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • D. B. McNamara
    • 1
    • 2
  • D. S. Rush
    • 1
    • 2
  • M. D. Kerstein
    • 1
    • 2
  • J. A. Bellan
    • 1
    • 2
  • P. R. Mayeux
    • 1
    • 2
  • M. F. Adinolfi
    • 1
    • 2
  • A. L. Hyman
    • 1
    • 2
  • P. J. Kadowitz
    • 1
    • 2
  1. 1.Department of PharmacologyTulane Medical SchoolNew OrleansUSA
  2. 2.Department of SurgeryTulane Medical SchoolNew OrleansUSA

Personalised recommendations