The Effect of Some Calcium-Channel Blocking Drugs on the Endogenous Catecholamine Content of Various Organs of the Rat

  • A. Chaudhry
  • M. M. Vohra
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 46)

Abstract

The calcium-channel blocking drugs have diverse chemical structures and, although the site and mechanism of their action has not been defined, they have been suggested to block voltage-dependent calcium channels by inhibiting transmembrane calcium influx through the cell membrane (1). The discovery of these drugs is a major development in cardiovascular pharmacology because their well-established ability to block excitation-contraction coupling in cardiac and vascular smooth muscle makes them useful in treating a wide variety of cardiovascular disorders. They also block excitation-secretion coupling and several other secretory processes that require calcium influx; however, they do so only at concentrations higher than those needed for blocking excitation-contraction coupling (2–6).

Keywords

Hydrocortisone Noradrenaline Catecholamine Acetylcholine Clozapine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol (17): 149–166, 1977.CrossRefGoogle Scholar
  2. 2.
    Haeusler G: Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther (180): 672–682, 1972.PubMedGoogle Scholar
  3. 3.
    Dreifuss JJ, Grau JD, Nordmann JJ: Effects on the isolated neurohypophysis of agents which affect the membrane permeability to calcium. J Physiol (London) (231): 96P–98P, 1973.PubMedGoogle Scholar
  4. 4.
    Russell JT, Thorn NA: Calcium and stimulus-secretion coupling in the neurohypophysis. II. Effects of lanthanum, a verapamil analogue (D-600) and prenylamine on 45-calcium transport and vasopressin release in isolated rat neurohypophysis. Acta Endocrinol (Copenhagen) (76): 471–487, 1974.PubMedGoogle Scholar
  5. 5.
    Malaisse WJ, Devis G, Pipeleers DG, Somers G: Calcium-antagonists and islet function. IV. Effect of D600. Diabetologia (12): 77–81, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Pinto JEB, Trifaro JM: The different effects of D-600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivation. Br J Pharmacol (57): 127–132, 1976.PubMedGoogle Scholar
  7. 7.
    Chaudhry A, Vohra MM: A reserpine-like action of verapamil on cardiac sympathetic nerves. Eur J Pharmacol (97): 156–158, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Chaudhry A, Vohra MM: Depletion of cardiac noradrenaline stores by the calcium-channel blocker D-600. Can J Physiol Pharmacol In press, 1984.Google Scholar
  9. 9.
    Schöne H-H, Lindher E: Die Wirkungen des N-[3′-Phenyl-propyl-(2′)]-1, 1-diphenyl-propyl-(3)-amins auf den Stoffwechsel von Serotonin und Noradrenalin. Arzneimittel-Forsch (10): 583–585, 1960.Google Scholar
  10. 10.
    Schöne H-H, Lindner E: Über die Wirkung von N-(3′Pheny-propyl-(2′)-1, 1-diphenyl-propyl-(3)-amin auf den Katecholamin-Stoffwechsel. Klin Wochensch (40): 1196–1200, 1962.CrossRefGoogle Scholar
  11. 11.
    Carlsson A, Hillarp NA, Waldeck B: Analysis of the Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Acta Physiol Scand (59): [Suppl 215] 5–38, 1963.Google Scholar
  12. 12.
    McAllister RG, Howell SM: Fluorometric assay of verapamil in biological fluids and tissues. J Pharm Sci (65): 431–432, 1976.PubMedCrossRefGoogle Scholar
  13. 13.
    Lüllmann H, Timmermans PBMWM, Ziegler A: Accumulation of drugs by resting or beating cardiac tissue. Eur J Pharmacol (60): 277–285, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    Keefe DL, Kates RE: Myocardial disposition and cardiac pharmacodynamics of verapamil in the dog. J Pharmacol Exp Ther (220): 91–96, 1982.PubMedGoogle Scholar
  15. 15.
    Pang DC, Sperelakis N: Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles. Eur J Pharmacol (87): 199–207, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Palm D, Grobecker H, Bak IJ: Membrane effects of catecholamine releasing drugs. In: Schumann HJ, Kroneberg G (eds) New aspects of storage and release mechanisms of catecholamines. (Bayer symposium II), Springer-Verlag, Berlin, 1970, pp 188–198.Google Scholar
  17. 17.
    Giachetti A, Shore PA: The reserpine receptor. Life Sci (23): 89–92, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Udenfriend S, Cooper JR., Clark CT, Baer JE: Rate of turnover of epinephrine in the adrenal medulla. Science (117): 663–665, 1953.PubMedCrossRefGoogle Scholar
  19. 19.
    Mras S, Sperelakis N: Comparison of [3H]bepridil and [3H]verapamil uptake into rabbit aortic rings. J Cardiovas Pharmacol (4): 777–783, 1982.CrossRefGoogle Scholar
  20. 20.
    Klevans LR, Gebber GL: Comparison of differential secretion of adrenal catecholamines by splanchnic nerve stimulation and cholinergic agents. J Pharmacol Exp Ther (172): 69–76, 1970.PubMedGoogle Scholar
  21. 21.
    Axelrod J, Hertling G, Patrick RW: Inhibition of H3-norepinephrine release by monoamine oxidase inhibitors. J Pharmacol Exp Ther (134): 325–328, 1961.PubMedGoogle Scholar
  22. 22.
    Kopin IJ: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol Rev (18): 513–523, 1966.PubMedGoogle Scholar
  23. 23.
    Antonaccio MJ, Smith CB: Effects of chronic pretreatment with pargyline upon responses of the atrial pacemaker and of left atrial strips of guinea pigs to tyramine, mephentermine, d-amphetamine and adrenergic nerve stimulation. J Pharmacol Exp Ther (170): 97–107, 1969.PubMedGoogle Scholar
  24. 24.
    Jonason J: Prevention of the reserpine effect on rat salivary gland noradrenaline by inhibitors of monoamine oxidase and catechol-o-methyl transferase. J Pharm Pharmacol (22): 93–95, 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Langley AE, Weiner N: The effect of pargyline pretreatment on the enhancement of the exocytotic release of norepinephrine during nerve stimulation which is induced by a benzoquinolizine compound with reserpine-like properties. J Pharmacol Exp Ther (213): 534–538, 1980.PubMedGoogle Scholar
  26. 26.
    Fairhurst AS, Whittaker ML, Ehlert FJ: Interactions of D600 (methoxyverapamil) and local anesthetics with rat brain α-adrenergic and muscarinic receptors. Biochem Pharmacol (29): 155–162, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Glossmann H, Hornung R: Calcium- and potassium-channel blockers interact with α-adrenoceptors. Mol Cell Endocrinol (19): 243–251, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Motulsky HJ, Snavely MD, Hughes RJ, Insel PA: Interaction of verapamil and other calcium channel blockers with α1- and α2-adrenergic receptors. Cir Res (52): 226–231, 1983.Google Scholar
  29. 29.
    Blackmore PF, El-Refai MF, Exton JH: α-Adrenergic blockade and inhibition of A23187 mediated Ca2+ uptake by the calcium antagonist verapamil in rat liver cells. Mol Pharmacol (15): 598–606, 1979.PubMedGoogle Scholar
  30. 30.
    Galzin A-M, Langer SZ: Presynaptic α2-adrenoceptor antagonism by verapamil but not by diltiazem in rabbit hypothalamic slices. Br J Pharmac (78): 571–577, 1983.Google Scholar
  31. 31.
    Bartholini G, Keller HH, Pletscher A: Effect of neuroleptics on endogenous norepinephrine in rat brain. Neuropharmacology (12): 751–756, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Wakade AR, Wakade TD: Reduction in norepinephrine content of sympathetic neuroeffector organs by alpha adrenergic antagonists and nerve stimulation: Evidence for presynaptic control of sympathetic transmitter release in intact animal. J Pharmacol Exp Ther (228): 287–292, 1984.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • A. Chaudhry
    • 1
  • M. M. Vohra
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations