Skip to main content

Organization and Control of the mRNA of the HSV TK Gene

  • Chapter
Viral Messenger RNA

Part of the book series: Developments in Molecular Virology ((DMVI,volume 7))

Summary

The sequences necessary for the activation of HSV TK gene transcription by HSV immediate-early proteins are largely coincident with the upstream region of the TK promoter. The implications of this arrangement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubbs D, Kit S: Mutant strains of herpes simplex deficient in thymidine kinase-inducing activity. Virology (22): 493–502, 1964.

    Article  PubMed  CAS  Google Scholar 

  2. Munyon W, Kraiselburd E, Davis D, Mann J: Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus. J Virol (23): 234, 1971.

    Google Scholar 

  3. Wigler M, Silverstein S, Lee L, Pellicer A, Cheng Y, Axel R: Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell (11): 223–232, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Colbere-Garapin F, Chousterman S, Horodniceau F, Kourilsky P, Garapin A: Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in E. coli K12. Proc Natl Acad Sci USA (76): 3755–3759, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. McKnight S, Gavis E: Expression of the herpes thymidine kinase gene in Xenopus laevis oocytes: an assay for the study of deletion mutants constructed in vitro. Nucl Acids Res (8): 5931–5948, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Wilkie N, Clements J, Boll W, Mantei N, Lonsdale D, Weissman C: Hybrid plasmids containing an active thymidine kinase gene of herpes simplex virus — 1. Nucl Acids Res (7): 859–877, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. McKnight S: The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucl Acids Res (8): 5949–5964, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Wagner M, Sharp J, Summers W: Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci USA (78): 1441–1445, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Smiley J, Wagner M, Summers W, Summers W: Genetic and physical evidence for the polarity of transcription of the thymidine kinase gene of herpes simplex virus. Virology (102): 83–93, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Proudfoot N, Brownlee G: Sequence at the 3′ end of globin mRNA shows homology with immunoglobin light chain mRNA. Nature (252): 359–362, 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Fitzgerald M, Shenk T: The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell (24): 251–260, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Preston C, McGeoch D: Identification and mapping of two polypeptides encoded within the herpes simplex virus type 1 thymidine kinase gene sequences. J Virol (38): 593–605, 1981.

    PubMed  CAS  Google Scholar 

  13. Marsden H, Haar L, Preston C: Processing of herpes simplex virus proteins and evidence that translation of thymidine kinase mRNA is initiated at three separate AUG codons. J Virol (46): 434–445, 1983.

    PubMed  CAS  Google Scholar 

  14. Constanzo F, Campadeli-Fiume G, Foa-Tomasi L, Cassai E: Evidence that herpes simplex virus DNA is transcribed by cellular RNA polymerase B. J Virol (21): 996–1001, 1977.

    Google Scholar 

  15. Honess R, Roizman B: Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol (14): 8–19, 1974.

    PubMed  CAS  Google Scholar 

  16. Watson R, Preston C, Clements J: Separation and characterization of herpes simplex virus type 1 immediate-early mRNA’s. J Virol (31): 42–52, 1979.

    PubMed  CAS  Google Scholar 

  17. Hackern S, Roizman B: Regulation of herpesvirus macromolecular synthesis: transcription-initiation sites and domains of a genes. Proc Natl Acad Sci USA (77):7122–7126, 1980.

    Article  Google Scholar 

  18. Anderson K, Costa R, Holland L, Wagner E: Characterization of herpes simplex virus type 1 RNA present in the absence of de novo protein synthesis. J Virol (34): 9–27, 1980.

    PubMed  CAS  Google Scholar 

  19. Watson R, Clements J: Characterization of transcription-deficient temperature-sensitive mutants of herpes simplex virus type 1. Virology (91): 364–369, 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Preston C: Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK. J Virol (29): 275–284, 1979.

    PubMed  CAS  Google Scholar 

  21. Watson R, Clements J: A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature (285): 329–330, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Post L, Hackern S, Roizman B: Regulation of α genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with α gene promoters. Cell (24): 555–565, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Mackem S, Roizman B: Differentiation between α promoter and regulator regions of herpes simplex virus 1: the functional domains and sequence of a moveable α regulator. Proc Natl Acad Sci USA (79): 4917–4921, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Batterson W, Roizman B: Characterization of the herpes simplex virion-associated factor responsible for the induction of α genes. J Virol (46): 371–377, 1983.

    PubMed  CAS  Google Scholar 

  25. Mackem S, Roizman B: Regulation of genes of herpes simplex virus: the α 27 gene promoter-thymidine kinase chimera is positively regulated in coverted L cells. J Virol (43): 1015–1023, 1982.

    PubMed  CAS  Google Scholar 

  26. Mackem S, Roizman B: Structural features of the herpes simplex virus a gene 4, 0, and 27 promoter-regulatory sequences which confer α regulation on chimeric thymidine kinase genes. J Virol (44): 939–949, 1982.

    PubMed  CAS  Google Scholar 

  27. Frink R, Draper K, Wagner E: Uninfected cell polymerase efficiently transcribes early but not late herpes simplex virus type 1 mRNA. Proc Natl Acad Sci USA (78): 6139–6143, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Holland L, Anderson K, Shipman C, Wagner E: Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology (101): 10–24, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Frink R, Eisenberg R, Cohen G, Wagner E: Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. J Virol (45): 634–647, 1982.

    Google Scholar 

  30. Garfinkle B, McAuslan B: Regulation of herpes simplex virus-induced thymidine kinase. Biochem Biophys Res Comm (58): 822–829, 1974.

    Article  PubMed  CAS  Google Scholar 

  31. Leung W: Evidence for a herpes simplex virus-specific factor controlling the transcription of deoxypyrimidine kinase. J Virol (27): 269–274, 1978.

    PubMed  CAS  Google Scholar 

  32. Leung W, Dimock K, Smiley J, Bacchetti S: Herpes simplex virus thymidine kinase transcripts are absent from both nucleus and cytoplasm during infection in the presence of cycloheximide. J Virol (36): 361–365, 1980.

    PubMed  CAS  Google Scholar 

  33. Sharp J, Wagner H, Summers W: Transcription of herpes simplex virus genes in vivo: Overlap of a late promoter with the 3′ end of the early thymidine kinase gene. J Virol (45): 10–17, 1983.

    PubMed  CAS  Google Scholar 

  34. Bacchetti S, Graham F: Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc Natl Acad Sci USA (74): 1590–1594, 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Harland R, Weintraub H, McKnight S: Transcription of DNA injected into Xenopus oocytes is influenced by template topology. Nature (302): 38–43, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Smiley J, Steege D, Juricek D, Summers W, Ruddle F: A herpes simplex virus 1 integration site in the mouse genome defined by somatic cell genetic analysis. Cell (15): 455–468, 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Pellicer A, Wigler M, Axel R, Silverstein S: The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell (14): 133–141, 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Luciw R, Bishop J, Varmus H, Capecchi M: Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell (33): 705–716, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger D, Chambon P: Promoter sequences of eukaryotic protein-coding genes. Science (209): 1406–1413, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Grosschedl R, Birnstiel M: Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutations in vivo. Proc Natl Acad Sci USA (77): 1432–1436, 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Benoist C, O’Hare K, Breathnach R, Chambon P: The ovalbumin gene-sequence of putative control regions. Nucl Acids Res (8): 127–142, 1960.

    Article  Google Scholar 

  42. McKnight S, Gavis E, Kingsbury R, Axel R: Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell (25): 385–398, 1981.

    Article  PubMed  CAS  Google Scholar 

  43. McKnight S, Kingsbury R: Transcriptional control signals of a eukaryotic protein-coding gene. Science (217): 316–324, 1982.

    Article  PubMed  CAS  Google Scholar 

  44. McKnight S: Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus. Cell (3): 355–365, 1982.

    Article  Google Scholar 

  45. Read G, Summers W: In vitro transcription of the thymidine kinase gene of herpes simplex virus. Proc Natl Acad Sci USA (79): 5215–5219, 1982.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts J, Axel R: Gene amplification and gene correction in somatic cells. Cell (29): 109–119, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Ostrander M, Vogel S, Silverstein S: Phenotypic switching in cells transformed with the herpes simplex virus thymidine kinase gene. Mol Cell Biol (2): 708–714, 1982.

    PubMed  CAS  Google Scholar 

  48. Zipser D, Lipsich L, Kwoh J: Mapping functional domains in the promoter region of the herpes thymidine kinase gene. Proc Natl Acad Sci USA (78): 6276–6280, 1981.

    Article  PubMed  CAS  Google Scholar 

  49. Smiley J, Swan H, Pater M, Pater A, Halpern M: Positive control of the herpes simplex virus thymidine kinase gene requires upstream DNA sequences. J Virol (47): 301–310, 1983.

    PubMed  CAS  Google Scholar 

  50. Lin S, Munyon W: Expression of the viral thymidine kinase gene in herpes simplex virus-transformed cells. J Virol (14): 1199–1208, 1974.

    PubMed  CAS  Google Scholar 

  51. Leiden J, Buttyan R, Spear P: Herpes simplex virus gene expression in transformed cells. I. Regulation of the viral thymidine kinase gene in transformed L cells by products of superinfecting virus. J Virol (20): 413–424, 1976.

    PubMed  CAS  Google Scholar 

  52. Kit S, Dubbs D: Regulation of herpesvirus thymidine kinase activ in LM (TK-) cells transformed by ultraviolet light-irradiated her simplex virus. Virology (76): 331–340, 1977.

    Article  PubMed  CAS  Google Scholar 

  53. Freeman M, Powell K: DNA-binding properties of a herpes simplex virus immediate-early protein. J Virol (44): 1084–1087, 1982.

    PubMed  CAS  Google Scholar 

  54. Feldman L, Imperiale M, Nevins J: Activation of early adenovirus transcription by the herpesvirus immediate early gene: Evidence for a common cellular control factor. Proc Natl Acad Sci USA (79): 4952–4956, 1982.

    Article  PubMed  CAS  Google Scholar 

  55. Draper K, Frink R, Wagner E: Detailed characterization of an apparently unspliced herpes simplex virus type 1 gene mapping in the interior of another. J Virol (43): 1123–1128, 1982.

    PubMed  CAS  Google Scholar 

  56. Nevins J: Mechanisms of activation of early viral transcription by the adenovirus E1A gene product. Cell (26): 213–230.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Smiley, J.R. (1985). Organization and Control of the mRNA of the HSV TK Gene. In: Becker, Y., Hadar, J. (eds) Viral Messenger RNA. Developments in Molecular Virology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2585-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2585-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9621-8

  • Online ISBN: 978-1-4613-2585-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics