Effects of Myocardial Ischemia on Regional Myocardial Function in the Experimental Animal

  • David A. Cox
  • Stephen F. Vatner


The most important aspect of myocardial ischemia is its effect on myocardial mechanical function. For centuries there has been an interest in the effects of coronary artery occlusion on the heart [1]. By the late nineteenth century, it was appreciated that coronary artery occlusion induced a fall in arterial pressure [2], but quantitative measurements of the effects of ischemia on contraction were first described in 1935 by Tennant and Wiggers [3]. One of the goals of this chapter is to review the merits and limitations of various experimental techniques for measurement of regional myocardial function in ischemia. Another is to discuss the effects of ischemia on myocardial contraction immediately after the onset of ischemia, during the steady-state and with chronic ischemia and infarction. Finally, we will examine the reversibility of derangements in myocardial function with reperfusion after brief coronary artery occlusions insufficient to induce infarction and after occlusions of up to several hours duration.


Myocardial Blood Flow Coronary Occlusion Coronary Artery Occlusion Regional Myocardial Blood Flow Systolic Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, G. Bochefontaine et Roussy. Arret rapide des contractions rhythmiques des ventricules cardiaques sous l’influence de l’occlusion des arteres coronaries. Comtes. rendus. 92: 86, 1881.Google Scholar
  2. 2.
    Porter, T. On the results of ligation of the coronary arteries. J. Physiol. (Lond) 15: 121, 1894.Google Scholar
  3. 3.
    Tennant, R. and Wiggers, C.J. The effect of coronary occlusion on myocardial contraction. Am. J. Physiol. 112: 351, 1935.Google Scholar
  4. 4.
    Prinzmetal, M., Schwartz, L.L. Corday, E., Spritzler, R., Bergman, H.C., and Kruger, H. E. Studies on the coronary circulation. VI. Loss of myocardial contractility after coronary artery occlusion. Ann. Intern. Med. 31: 429, 1949.PubMedGoogle Scholar
  5. 5.
    Sayen, JJ, Sheldon, W.F. Pierce, G. and Kuo, P.T. Polarographic oxygen, the epicardial electrocardiogram and muscle contraction in experimental acute regional ischemia of the left ventricle. Circ. Res. 6: 779, 1958.PubMedGoogle Scholar
  6. 6.
    Heikkila, J., Tabakin B.S., and Hugenholtz P.G. Quantification of function in normal and infarcted regions of the left ventricle. Cardiovasc. Res. 6: 516, 1972.PubMedCrossRefGoogle Scholar
  7. 7.
    Tatooles, C.J. and Randall, W.C. Local ventricular bulging after acute coronary occlusion. Am. J. Physiol. 201: 451, 1961.PubMedGoogle Scholar
  8. 8.
    Schelbert, H.R., Covell, J.W., Burns, J.W., Maroko, P.R. and Ross, J. Jr. Observations on factors affecting local forces in the left ventricular wall during acute myocardial ischemia. Circ. Res. 29: 306, 1971.PubMedGoogle Scholar
  9. 9.
    Banka, V.S., Chadda, K.D. and Helfant, R.H. Limitations of myocardial revascularization in restoration of regional contraction abnormalities produced by coronary occlusion. Am. J. Cardiol. 34: 156, 1974.Google Scholar
  10. 10.
    Puri, P.S. and Bing, R.J. Effect of drugs on myocardial contractility in the intact dog and in experimental myocardial infarction: Basis for their use in cardiogenic shock. Am. J. Cardiol. 21: 886, 1968.PubMedCrossRefGoogle Scholar
  11. 11.
    Hood, W.B., Covelli, V.H., Abelmann, W.H. and Norman, J.C. Persistence of contractile behavior in acutely ischaemic myocardium. Cardiovasc. Res. 3: 249, 1969.PubMedCrossRefGoogle Scholar
  12. 12.
    Hawthorne, E.W. Asynergy of cardiac contraction-experimental. In Therapeutic Advances in the Practice of Cardiology, C.P. Bailey, A.G. Shapiro, and S. Gollub. New York: Grune & Stratton, 1970, p. 227.Google Scholar
  13. 13.
    Goldstein, S. and DeJong, J.W. Changes in left ventricular wall dimensions during regional myocardial ischemia. Am. J. Cardiol. 34: 56, 1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Bugge-Asperheim, Leraand, S. and Kul, F. Local dimensional changes of the myocardium by ultrasonic technique. Scand. J. Clin. Lab. Invest. 24: 361, 1969.PubMedCrossRefGoogle Scholar
  15. 15.
    Theroux, P. Franklin, D., Ross, J., Jr., and Kemper, W.S. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ. Res. 35: 896, 1974.PubMedGoogle Scholar
  16. 16.
    Gallagher, K.P., Kumada, T., Koziol, J.A., McKown, M.D., Kemper, W.S., and Ross, J., Jr. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62: 1266, 1980.PubMedGoogle Scholar
  17. 17.
    Gallagher, K.P., Osakada, G. Hess, O.M., Koziol, J.A., Kemper, W.S., and Ross, J., Jr. Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ. Res. 50: 352, 1982.PubMedGoogle Scholar
  18. 18.
    Heyndrickx, G.R., Millard, R.W., McRitchie, R J., Maroko, P.R., and Vatner, S.F. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J. Clin. Invest. 56: 978, 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    Sasayama, S., Franklin, D., Ross, J., Jr., Kemper, W.S., and McKown, D. Dynamic changes in left ventricular wall thickness and their use in analyzing cardiac function in the conscious dog. A study based on a modified ultrasonic technique. Am. J. Cardiol. 38: 870, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Roan, P., Scales, F., Saffer, S., Buja, M., and Willerson, J.T. Functional characterization of left ventricular segmental responses during the initial 24 h and 1 wk after experimental canine myocardial infarction. J. Clin. Invest. 64: 1074, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Vatner, S.F. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ. Res. 47: 201, 1980.PubMedGoogle Scholar
  22. 22.
    Ross, J., Jr. and Franklin, D. Analysis of regional myocardial function, dimensions, and wall thickness in the characterization of myocardial ischemia and infarction. Circulation 53 (Suppl I): I - 88, 1976.Google Scholar
  23. 23.
    Kerber, R.E., and Abboud, E.M. Echocardiographic detection of regional myocardial infarction. An experimental study. Circulation 47: 997, 1973.PubMedGoogle Scholar
  24. 24.
    Kerber, R.E., Marcus, M.L., Ehrhardt, J., Wilson, R., and Abboud, E.M. Correlation between echocardiographically demonstrated segmental dyskinesis and regional myocardial perfusion. Circulation 52: 1097, 1975.PubMedGoogle Scholar
  25. 25.
    Lieberman, A.N., Weiss, J.L., Jugdutt, B.I., Becker, L.C., Bulkley, B.H., Garrison, J.G., Hutchins, G.M., Kallman, C.A., and Weisfeldt, M.L. Two-dimensional echocardiography and infarct size: Relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 65: 739, 1981.CrossRefGoogle Scholar
  26. 26.
    Wyatt, H.L., Meerbaum, S., Heng, M.K., Rit, J., Gueret, P. and Corday, E. Experimental evaluation of the extent of myocardial dyssynergy and infarct size by two-dimensional echocardiography. Circulation 63: 607, 1981.PubMedCrossRefGoogle Scholar
  27. 27.
    Weyman, A.E., Franklin, T.D., Jr., Hogan, R.D., Gillam, L.D., Wiske, P.S., Newell, J., Gibbons, E.F., and Foale, R.A. Importance of temporal heterogeneity in assessing the contraction abnormalities associated with acute myocardial ischemia. Circulation 70: 102, 1984.PubMedCrossRefGoogle Scholar
  28. 28.
    Meister, S.G., Casey, P.R., Jacobs, L., and Banett, M J. 2D echo definition of endocardium (abstr). Circulation 62 (Suppl III): III - 132, 1980.Google Scholar
  29. 29.
    Hirzel, H.O., Sonnenblick, E.H., and Kirk, E.S. Absence of a lateral border zone of intermediate creatine phosphokinase depletion surrounding a central infarct 24 hours after acute coronary occlusion in the dog. Circ. Res. 41: 673, 1977.PubMedGoogle Scholar
  30. 30.
    Factor, S.M., Okun, E.M., and Kirk, E.S. The histological lateral border of acute canine myocardial infarction. A function of microcirculation. Circ. Res. 48: 640, 1981.PubMedGoogle Scholar
  31. 31.
    Murdock, R.H., Harlan, D.M., Morris, JJ., Pryor, W.W., Jr., and Cobb, F.R. Transitional blood flow zones between ischemic and nonischemic myocardium in the awake dog. Analysis based on distribution of the intramural vasculature. Circ. Res. 52: 451, 1983.PubMedGoogle Scholar
  32. 32.
    Cox, D.A., and Vatner, S.F. Myocardial function in areas of heterogeneous perfusion after coronary artery occlusion in conscious dogs. Circulation 66: 1154, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Jr., and Sonnenblick, E.H. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24: 339, 1969.PubMedGoogle Scholar
  34. 34.
    Genain, C., Theroux, P., Thuillez, C., Bourassa, M.G., and Waters, D.D. The interrelationships between function and flow in the subendocardial and subepicardial regions of the left ventricle (abstr). Circulation 60 (Suppl II): II - 28, 1979.Google Scholar
  35. 35.
    Theroux, P., Ross, J., Jr., Franklin, D., Kemper, W.S., and Sasayama, S. Regional myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, propranolol, nitroglycerin, and lidocaine. Circulation 53: 302, 1976.PubMedGoogle Scholar
  36. 36.
    Tyberg, J.V., Forrester, J.S., Wyatt, H.L., Goldner, SJ., Parmley, W.W., and Swan, HJ.C. An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation 49: 748, 1974.PubMedGoogle Scholar
  37. 37.
    Forrester, J.S., Wyatt, H.L., DaLuz, P.L., Tyberg, J.V., Diamond, G.A., and Swan, H.J.C. Functional significance of regional ischemic contraction abnormalities. Circulation 54: 64, 1976.PubMedGoogle Scholar
  38. 38.
    Pagani, M., Vatner, S.F., Baig, H., and Braunwald, E. Initial myocardial adjustments to brief periods of ischemia and reperfusion in the conscious dog. Circ. Res. 43: 83, 1978.PubMedGoogle Scholar
  39. 39.
    Kumada, T., Karliner, J.S., Pouleur, H., Gallagher, K.P., Shirato, K., and Ross, J., Jr. Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am. J. Physiol. 237: H542, 1979.PubMedGoogle Scholar
  40. 40.
    Weigner, A.W., Allen, G J., and Bing, O.H.L. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol. 235: H776, 1978.Google Scholar
  41. 41.
    Tyberg, J.V., Yeatman, L.A., Parmley, W.W., Urschel, C.W., and Sonnenblick, E.H. Effects of hypoxia on mechanisms of cardiac contraction. Am. J. Physiol. 218: 1780, 1970.PubMedGoogle Scholar
  42. 42.
    Hefner, L.L., Sheffield, L.T., Cobbs, G.C., and Klip, W. Relation between mural force and pressure in the left ventricle of the dog. Circ. Res. 11: 654, 1962.PubMedGoogle Scholar
  43. 43.
    Wyatt, H.L., DaLuz, P.L., Forrester, J., Diamond, G., Chagrasulis, R., and Swan, H.J.C. Depression of function in nonischemic myocardium after coronary occlusion (abstr). Circulation 49 (Suppl III): III - 119, 1974.Google Scholar
  44. 44.
    Amano, J., Lavallee, M., Randall, W.C., Vatner, S.F., and Thomas, J.X. Relative importance of cardiac nerves and the Frank-Starling mechanism on regional ventricular function following acute coronary occlusion in conscious dogs (abstr). Circulation 70 (Suppl II): II - 180, 1984.Google Scholar
  45. 45.
    Lavallee, M., Cox, D., Patrick, T.A., and Vatner, S.F. Salvage of myocardial function by coronary artery reperfusion 1, 2, and 3 hours after occlusion in conscious dogs. Circ. Res. 53: 235, 1983.PubMedGoogle Scholar
  46. 46.
    Salisbury, P.F., Cross, C.E., and Rieben, P.A. Acute ischemia of the inner layers of the ventricular wall. Am. Heart J. 66: 650, 1963.PubMedCrossRefGoogle Scholar
  47. 47.
    Buckberg, G.D., Fixler, D.E., and Archie, J.P. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ. Res. 30: 67, 1972.PubMedGoogle Scholar
  48. 48.
    Banka, V.S., Bodenheimer, M.M., and Helfant, R.H. Relation between progressive decreases in regional coronary perfusion and contractile abnormalities. Am. J. Cardiol. 40: 200, 1977.PubMedCrossRefGoogle Scholar
  49. 49.
    Waters, D.D., Daluz, P., Wyatt, H.L., Swan, FUG., and Forrester, J.S. Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am. J. Cardiol. 39: 537, 1977.PubMedCrossRefGoogle Scholar
  50. 50.
    Wyatt, H.L., Forrester, J.S., Tyberg, J.V., Goldner, S., Logan, S.E., Parmley, W.W., and Swan, H.J.C. Effect of graded reductions in regional coronary perfusion on regional and total cardiac function. Am. J. Cardiol. 36: 185, 1975.PubMedCrossRefGoogle Scholar
  51. 51.
    Stowe, D.F., Mathey, D.G., Moores, W.Y., Glantz, S.A., Townsend, R.M., Kabra, P., Chatterjee, K., Parmley, W.W., and Tyberg, J.V. Segment stroke work and metabolism depend on coronary blood flow in the pig. Am. J. Physiol. 234: H597, 1978.PubMedGoogle Scholar
  52. 52.
    Weintraub, W.S., Hattori, S., Agarwal, J.B., Bodenheimer, M.M., Banka, V.S., and Helfant, R.H. The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ. Res. 48: 430, 1981.PubMedGoogle Scholar
  53. 53.
    Savage, R.M., Guth, B., White, F.C., Hagan, A.D., and Bloor, C.M. Correlation of regional myocardial blood flow and function with myocardial infarct size during acute myocardial ischemia in the conscious pig. Circulation 64: 699, 1981.PubMedCrossRefGoogle Scholar
  54. 54.
    Bush, L.R., Buja, M., Samowitz, W., Rude, R.E., Wathen, M., Tilton, G.D., and Willerson, J.T. Recovery of left ventricular segmental function after long-term reperfusion following temporary coronary occlusion in conscious dogs. Comparison of 2 and 4 hour occlusions. Circ. Res. 53: 248, 1983.PubMedGoogle Scholar
  55. 55.
    Becker, L.C., Ferreira, R., and Thomas, M. Mapping of left ventricular blood flow with radioactive microspheres in experimental coronary artery occlusion. Cardiovasc. Res. 7: 391, 1973.PubMedCrossRefGoogle Scholar
  56. 56.
    Vokonas, P.S., Malsky, P.M., Paul, S J., Robbins, S.L., and Hood, W.B., Jr. Radioautographic studies in experimental myocardial infarction: Profiles of ischemic blood flow and quantification of infarct size in relation to magnitude of ischemic zone. Am. J. Cardiol. 42: 67, 1978.PubMedCrossRefGoogle Scholar
  57. 57.
    Jugdutt, B.I., Hutchins, G.M., Bulkley, B.H., and Becker, L.C. Myocardial infarction in the conscious dog: Three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 60: 1141, 1979.PubMedGoogle Scholar
  58. 58.
    Wyatt, H.L., Forrester, J.S., DaLuz, P.L., Diamond, G.A., Chagrasulis, R., and Swan, HJ.C. Functional abnormalities in nonoccluded regions of myocardium after experimental coronary occlusion. Am. J. Cardiol. 37: 366, 1976.PubMedCrossRefGoogle Scholar
  59. 59.
    Guth, B.D., White, F.C., Gallagher, K.P., and Bloor CM. Decreased systolic wall thickening in myocardium adjacent to ischemic zones in conscious swine during brief coronary artery occlusion. Am, Heart. J. 107: 458, 1984.CrossRefGoogle Scholar
  60. 60.
    Corday, E., Kaplan, L., Meerbaum, S., Brasch, J., Constantini, C., Lang, T-W., Gold, H., Rubins, S., and Osher, J. Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion. Am. J. Cardiol. 36: 385, 1975.PubMedCrossRefGoogle Scholar
  61. 61.
    Braunwald, E., and Kloner, R.A. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66: 1146, 1982.PubMedCrossRefGoogle Scholar
  62. 62.
    Bogen, D.K., Rabinowitz, S.A., Needleman, A., McMahon, T.A., and Abelmann, W.H. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circulation Res. 47: 728, 1980.PubMedGoogle Scholar
  63. 63.
    Mann, T., Brodie, B.R., Grossman, W., and McLaurin, L.P. Effect of angina on the left ventricular diastolic pressure-volume relationship. Circulation 55: 761, 1977.PubMedGoogle Scholar
  64. 64.
    Papaietro, S.E., Coghlan, H.C., Zisserman, D., Russell, R.O., Rackley, C.E., and Rogers, W J. Impaired maximal rate of left ventricular relaxation in patients with coronary artery disease and left ventricular dysfunction. Circulation 59: 984, 1979.Google Scholar
  65. 65.
    Rousseau, M.F., Veriter, Co., Detry, J-M.R., Brasseur, L., and Pouleur, H. Impaired early left ventricular relaxation in coronary artery disease: Effects of intracoronary nifedipine. Circulation 62: 764, 1980.PubMedGoogle Scholar
  66. 66.
    Reduto, L.A., Wickemeyer, W J., Young, J.B., Del Ventura, L.A., Reid, J.W., Glaeser, D.H., Quinnes, M.A., and Miller, R.R. Left ventricular diastolic performance at rest and during exercise in patients with coronary artery disease. Assessment with first-pass radionuclide angiography. Circulation 63: 1228, 1981.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonow, R.D., Bacharach, S.L., Green, M.V., Kent, K.M., Rosing, D.R., Lipson, L.C., Leon, M.B., and Epstein, S.E. Impaired left ventricular diastolic filling in patients with coronary artery disease: Assessment with radionuclide angiography. Circulation 64: 315, 1981.PubMedCrossRefGoogle Scholar
  68. 68.
    Dwyer, E.M. Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation 42: 1111, 1970.PubMedGoogle Scholar
  69. 69.
    Barry, W.H., Brooker, J.Z., Alderman, E.L., and Harrison, D.C. Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation 49: 255, 1974.PubMedGoogle Scholar
  70. 70.
    Gaasch, W.H., Levine, HJ., Quinones, M.A., and Alexander, J.K. Left ventricular compliance: Mechanisms and clinical implications. Am. J. Cardiol. 38: 645, 1976.PubMedCrossRefGoogle Scholar
  71. 71.
    Hess, O.M., Osakada, G., Lavelle, J.F., Gallagher, K.P., Kemper, W.S., and Ross, J., Jr. Diastolic myocardial wall stiffness and ventricular relaxation during partial and complete coronary occlusions in the conscious dog. Circ. Res. 52: 387, 1983.PubMedGoogle Scholar
  72. 72.
    Bourdillon, P.D., Lorell, B.H., Mirsky, I., Paulus, W J., Wynne, J., and Grossman, W. Increased regional myocardial stiffness of the left ventricle during pacing-induced angina in man. Circulation 67: 316, 1983.PubMedCrossRefGoogle Scholar
  73. 73.
    Pouleur, H., Rousseau, M.F., van Eyll, C., and Charlier, A.A. Assessment of regional left ventricular relaxation in patients with coronary artery disease: Importance of geometric factors and changes in wall thickness. Circulation 69: 696, 1984.PubMedCrossRefGoogle Scholar
  74. 74.
    Glantz, S.A., and Parmley, W.W. Factors which affect the diastolic pressure-volume curve. Circ. Res. 42: 171, 1978.PubMedGoogle Scholar
  75. 75.
    Mitchell, J.H., Linden, RJ., and Sarnoff, S.L. Influence of cardiac sympathetic and vagal nerve stimulation on the relation between left ventricular diastolic pressure and myocardial segment length. Circ. Res. 8: 1100, 1960.PubMedGoogle Scholar
  76. 76.
    Weisfeldt, M.L., Armstrong, P., Scully, H.E., Sanders, C.A., and Daggett, W.M. Incomplete relaxation between beats after myocardial hypoxia and ischemia. J. Clin. Invest. 53: 1626, 1974.PubMedCrossRefGoogle Scholar
  77. 77.
    Mason SJ., Weiss, J.L., Weisfeldt, M.L., Garrison, J.B., and Fortuin, NJ. Exercise electrocardiography: Detection of wall motion abnormalities during ischemia. Circulation 59: 50, 1979.PubMedGoogle Scholar
  78. 78.
    Grossman, W., and Barry, W.H. Diastolic pressure-volume relations in the diseased heart. Fed. Proc. 39: 148, 1980.PubMedGoogle Scholar
  79. 79.
    Theroux, P., Ross, J. Jr., Franklin, D., Covell, J.W., Bloor, C.M., and Sasayama, S. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res. 40: 158, 1977.PubMedGoogle Scholar
  80. 80.
    Forrester, J.S., Diamond, G., Parmley, W.W., and Swan, HJ.C. Early increase in left ventricular compliance after myocardial infarction. J. Clin, Invest. 51: 598, 1972.CrossRefGoogle Scholar
  81. 81.
    Pirzada, F.A., Ekong, E.A., Vokonas, P.S., Apstein, C.A., and Hood, W.B., Jr. Experimental myocardial infarction. XIII. Sequential changes in left ventricular pressure-length relationships in the acute phase. Circulation 53: 970, 1976.PubMedGoogle Scholar
  82. 82.
    Hood, W.B., Bianco, J.A., Kumar, R., and Whiting, R.B. Experimental myocardial infarction. IV. Reduction of left ventricular compliance in the healing phase. J Clin. Invest. 49: 1316, 1970.PubMedCrossRefGoogle Scholar
  83. 83.
    Phillips, S J., Kongtahworn, C., Zeff, R.H., Benson, P.C., Lannone, L., Brown, T., and Gordon, D.F. Emergency coronary artery revascularization: A possible therapy for acute myocardial infarction. Circulation 60: 241, 1979.PubMedGoogle Scholar
  84. 84.
    Hartzler, G.O., Rutherford, B.D., McConahay, D.R., Johnson, W.L., McCallister, B.D., Gura, G.M., Jr., Conn, R.C., and Crockett, J.E. Percutaneous transluminal coronary angioplasty with and without thrombolytic therapy for treatment of acute myocardial infarction. Am. Heart. J. 106: 965, 1983.PubMedCrossRefGoogle Scholar
  85. 85.
    Jennings, R.B., Sommers, H.M., Smyth, G.A., Flack, H.A., and Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol. 70: 68, 1960.PubMedGoogle Scholar
  86. 86.
    Jennings, R.B. Early phase of myocardial ischemic injury and infarction. Am. J. Cardiol, 24: 753, 1969.PubMedCrossRefGoogle Scholar
  87. 87.
    Puri, P.S. Modification of experimental myocardial infarct size by cardiac drugs. Am. J. Cardiol. 33: 521, 1974.PubMedCrossRefGoogle Scholar
  88. 88.
    Weiner, J.M., Apstein, C.S., Arthur, J.H., Pirzada, F.A., and Hood, W.B., Jr. Persistence of myocardial injury following brief periods of coronary occlusion. Cardiovasc. Res. 10: 678, 1976.PubMedCrossRefGoogle Scholar
  89. 89.
    Heyndrickx, G.R., Baig, H., Nellens, P., Leusen, I., Fishbein, M.C., and Vatner, S.F. Depression of regional blood flow and wall thickening after brief coronary occlusions. Am. J. Physiol, 234: H653, 1978.PubMedGoogle Scholar
  90. 90.
    Puri, P. Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Am. J. Cardiol. 36: 244, 1975.PubMedCrossRefGoogle Scholar
  91. 91.
    Kloner, R.A., Ellis, S.G., Lange, R., and Braunwald, E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 68 (suppl I): I - 8, 1983.Google Scholar
  92. 92.
    Fox, A.C., Reed, G.E., Meilman, H., and Silk, B.B. Release of nucleotides from canine and human hearts as an index of prior ischemia. Am. J. Cardiol. 43: 52, 1979.PubMedCrossRefGoogle Scholar
  93. 93.
    DeBoer, L.W.V., Ingwall, J.S., Kloner, R.A., and Braunwald, E. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc. Natl. Acad. Sci, USA 77: 5471, 1980.PubMedCrossRefGoogle Scholar
  94. 94.
    Swain, J.L., Sabina, R.L., McHale, P.A., Greenfield, J.C., Jr., and Holmes, E.W. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am. J. Physiol. 242: H818, 1982.PubMedGoogle Scholar
  95. 95.
    Tomada, H., Parmley, W.W., Fijimura, S., and Mateoff, J.M. Effects of ischemia and reoxygenation on regional myocardial performance of the dog. Am. J. Physiol. 221: 1718, 1971.Google Scholar
  96. 96.
    Lange, R., Ware, J., and Kloner, R.A. Absence of a cumulative deterioration of regional function during three repeated 5 or 15 minute coronary occlusions. Circulation 69: 400, 1984.PubMedCrossRefGoogle Scholar
  97. 97.
    Maroko, P.R., Kjekshus, J.K., Sobel, B.E., Watanabe, T., Covell, J.W., Ross, J., Jr., and Braunwald, E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43: 67, 1971.PubMedGoogle Scholar
  98. 98.
    Reimer, K.A., Lowe, J.E., Rasmussen, M.M., and Jennings, R.B. The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation 56: 786, 1977.PubMedGoogle Scholar
  99. 99.
    Maroko, P.R., Libby, P., Ginks, W.R., Bloor, C.M., Shell, W.E., Sobel, B.E., and Ross, J., Jr. Coronary artery reperfusion. I. Early effects of local myocardial function and the extent on myocardial necrosis. J. Clin. Invest. 51: 2710, 1972.PubMedCrossRefGoogle Scholar
  100. 100.
    Mathur, V.S., Guinn, G.A., and Burris, W.H. Maximal revascularization (reperfusion) in intact conscious dogs after 2 to 5 hours of coronary occlusion. Am. J. Cardiol. 36: 252, 1975.PubMedCrossRefGoogle Scholar
  101. 101.
    Constantini, C., Corday, E., Lang, T-W., Meerbaum, S., Brasch, J., Kaplan, L., Rubins, S., Gold, H., and Osher, J. Revascularization after 3 hours of coronary arterial occlusion: Effects on regional cardiac metabolic function and infarct size. Am. J. Cardiol. 36: 368, 1975.CrossRefGoogle Scholar
  102. 102.
    Theroux, P., Ross, J., Jr., Franklin, D., Kemper, W.S., and Sasayama, S. Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am. J. Cardiol. 38: 599, 1976.PubMedCrossRefGoogle Scholar
  103. 103.
    Ellis, S.G., Henschke, C.I., Sandor, T., Wynne, J., Braunwald, E., and Kloner, R.A. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J. Am. Coll. Cardiol. 1: 1047, 1983.PubMedCrossRefGoogle Scholar
  104. 103.
    Ellis, S.G., Henschke, C.I., Sandor, T., Wynne, J., Braunwald, E., and Kloner, R.A. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J. Am. Coll. Cardiol. 1: 1047, 1983.PubMedCrossRefGoogle Scholar
  105. 105.
    Heyndrickx, G.R., Patrick, T., Manders, T., Rogers, G., Rosendorff, C. and Vatner, S.F. Relation between hyperemia following coronary reperfusion and subsequent recovery of regional function in conscious baboons (abstr). Circulation 70 (Suppl II): II - 259, 1984.Google Scholar
  106. 106.
    Stack, R.S., Phillips, H.R., Grierson, D.S., Behar, V.S., Kong, Y., Peter, R.H., Swain, V., and Greenfield, J.R. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J. Clin. Invest. 72: 84, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • David A. Cox
  • Stephen F. Vatner

There are no affiliations available

Personalised recommendations