Skip to main content

Antitumour Lymphocyte Responses

  • Chapter
Immunological Aspects of Cancer

Part of the book series: Developments in Oncology ((DION,volume 21))

Abstract

Despite the considerable achievements in immunology during the past two decades, control of tumour development by effective immunotherapy is still not possible. This situation reflects the complexity of events that occur in response to tumour growth. Other chapters in this book outline the important advances made in the study of macrophage function and the developments in monoclonal antibody production against tumour-associated antigens. In this chapter the role of the lymphocyte in combating tumour development and metastatic spread is considered. Of importance, however, is the understanding that lymphocyte function is influenced by other cell types, hormones, and products released by tumour cells and that much of our current knowledge has stemmed from in vitro experimentation. Caution must be exercised when interpreting the results of laboratory tests and relating these to their in vivo relevance, since it is not possible to mimic the conditions that the in vivo environment imposes on lymphocyte activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hewitt HB. Animal tumour models and their relevance to human tumour immunology. J Biol Resp Modif 1: 107–119, 1982.

    Google Scholar 

  2. Vose BM, Vanky F, Klein E. Lymphocyte cytotoxicity against autologous tumour biopsy cells in humans. Int J Cancer 20: 512–519, 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Vose BM, Vanky F, Fopp M, Klein E. Restricted autologous lymphocytotoxicity in lung neoplasia. Brit J Cancer 38: 375–387, 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Vanky F, Vose BM, Fopp M, Klein E. Human tumour lymphocyte interaction in vitro. VI. Specificity of primary and secondary autologous lymphocyte mediated cytotoxicity. J Nat Cancer Inst 62: 1407–1413, 1979.

    PubMed  CAS  Google Scholar 

  5. Vose, BM. Specific T-cell-mediated killing of autologous lung tumour cells. Cell Immunol 55: 12–19, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Vose BM, Vanky F, Fopp M, Klein E. In vitro generation of secondary cytotoxic response against autologous human tumour biopsy cells. Int J Cancer 21: 588–593, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Vanky F, Vose BM, Fopp M, Klein E., Stjernsward J. Human tumour-lymphocyte interaction in vitro. IV. Comparison of the results with autologous tumour stimulation (ATS) and lymphocytotoxicity (ALC). In Flad HD, Erfarth Ch, Betzler M (eds.), Immunodiagnosis and immunotherapy of malignant tumours— Relevance to surgery? Berlin: Springer Verlag, 1979, pp. 143–152.

    Google Scholar 

  8. Vanky F, Klein E. Specificity of auto-tumour cytotoxicity exerted by fresh, activated and propagated human T–lymphocytes. Int J Cancer 29: 547–553, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Vose BM, Bonnard GD. Specific cytotoxicity against autologous tumour and proliferative responses of human lymphocytes grown in interleukin 2. Int J Cancer 29: 33–39, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Troye M, Vilien M, Pape GR, Perlmann P. Cytotoxicity in vitro of blood lymphocytes from bladder cancer patients and controls to allogeneic or autologous tumour cells derived from established cell lines or short-term cultures. Int J. Cancer 25: 33–43, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Law LW. Changes in tumour-specific antigen expression during passage in vitro and in vivo of newly derived methylcholanthrene induced sarcomas of BALB/c mice. Int J Cancer 25: 251–259, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Forbes JT, Yoshinobu N, Smith RT. Tumour–specific immunity to chemically induced tumours. J Exp Med 141: 1187–1200, 1975.

    Google Scholar 

  13. Foley RT. Antigen properties of methylcholanthrene-induced tumours in mice of the strain of origin. Cancer Res 13: 835–837, 1957.

    Google Scholar 

  14. Prehn RT, Maine JM. Immunity to methylcholanthrene-induced tumours in mice of the strain of origin. Cancer Res 13: 835-837, 1957.

    Google Scholar 

  15. Bosombrio MA. Search for common antigenicites among 25 sarcomas induced by methylcholanthrene. Cancer Res 30: 2458–2452, 1970.

    Google Scholar 

  16. Pellis NR, Kahan BD. Tumour specific immunity induced with soluble materials: Restricted range of antigen dose and of challenge tumour load for immunoprotection. J Immunol 115: 1717–1722, 1975.

    Google Scholar 

  17. McCollester DL. Isolation of Meth A cell surface membranes possessing tumour-specific transplantation antigen activity. Cancer Res 30: 2872–2880, 1970.

    Google Scholar 

  18. Bubenik J, Indrova M, Nemeckova S, Malkovsky M, Von Broen B, Palek V, Anderlikova J. Solubilised tumour-associated antigens of methylcholanthrene-induced mouse sarcomas. Comparative studies by in vitro sensitisation of lymph node cells, macrophage electrophoretic mobility assay and transplantation tests. Int J Cancer 21: 348–355, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Yamagishi H, Pellis NR, Kahan BG. Tumour protective and facilitating antigens from 3MKCL-solubilised tumour extracts. J Surg Res 4: 392–398, 1979.

    Article  Google Scholar 

  20. Roger MJ, Law LW. Some immunogenic and biochemical properties of tumour-associated transplantation antigens (TATA) obtained in soluble form or solubilized from 2-methylcholanthrene-induced sarcomas Meth-A and Cl-4. Int J Cancer 27: 789–796, 1981.

    Article  Google Scholar 

  21. Leffell MS, Coggin JH. Common transplantation antigens of methylcholanthrene-induced murine sarcomas detected by three assays of tumour rejection. Cancer Res 37: 4112–4119, 1977.

    PubMed  CAS  Google Scholar 

  22. Economou GC, Takeidu N, Boone CW. Common tumour rejection antigens in methylcholanthrene- induced squamous cell carcinomas of mice detected by tumour protection and radioisotopic foot–pad assay. Cancer Res 37: 37–41, 1977.

    PubMed  CAS  Google Scholar 

  23. Rees RC, Price MR, Baldwin RW. Oncodevelopment antigen expression in chemical carcinogenesis. Methods Cancer Res 18: 99–133, 1979.

    Google Scholar 

  24. Coggin JH, Ambrose KR. Embryonic and foetal determinants on viral and chemically-induced tumours. Methods Cancer Res 18: 371–389, 1979.

    Google Scholar 

  25. Parmiani G, Invernizzi G. Alien histocompatibility determinants on the cell surface of sarcomas induced by methylcholanthrene. I. in vivo studies. Int J Cancer 16: 756–767, 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Invernizzi G, Parmiani G. Tumour-associated transplantation antigens of chemically-induced sarcomata cross-reacting with allogeneic histocompatibility antigens. Nature 254: 713–714, 1975.

    Article  PubMed  CAS  Google Scholar 

  27. Meschini A, Invernizzi G, Parmiani G. Expression of alien H-2 specificity on a chemically-induced BALB/c fibrosarcoma. Int J Cancer 20: 271–283, 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Fujimoto S, Chen CH, Sabbadini E, Sehon AH. Association of tumour and histocompatibility antigens in sera of lymphoma bearing mice. J Immunol 111: 1093–1100, 1973.

    PubMed  CAS  Google Scholar 

  29. Chang S, Nowinski RC, Nowinski K, Irie RF. Immunological studies on a mouse mammary tumour. A further characterisation of a mammary tumour antigen and its distribution in lymphatic cells of allogeneic mice. Int J Cancer 9: 409–416, 1972.

    Article  PubMed  CAS  Google Scholar 

  30. Kubota K, Takizawa K, Yamamoto T. Detection of H-2 antigens or H-2-like molecules on LFM3A2 hybrid cells by immunoprecipitation with specific anti-TASA serum. Jap J Exp Med 46: 325–328, 1976.

    PubMed  CAS  Google Scholar 

  31. Klein G, Klein E. Are methylcholanthrene-induced sarcoma-associated rejection-induced (TSTA) antigens modified forms of H–2 or linked determinants? Int J Cancer 15: 879–887, 1975.

    Article  PubMed  CAS  Google Scholar 

  32. Klein G. Tumour associated antigens in H-2 hemizygous isoantigenic variants of a somatic cell-hybrid derived from the fusion of a 3-methylcholanthrene induced sarcoma and a mammary carcinoma. J Nat Cancer Inst 58: 383–386, 1977.

    PubMed  CAS  Google Scholar 

  33. Lennox E, Sikora K, Koch G. The tumour specific-transplantation antigens of methylcholanthrene-induced murine sarcomas. In Ferrone S, Herberman RB, Reisfeld RA, Gorini L (eds.), Current trends in tumour immunology. New York: Garland Publishing, 1979.

    Google Scholar 

  34. Bowen JG, Baldwin RW. Tumour antigens and alloantigens. I. Relation of a rat tumour-specific antigen with normal alloantigens of the host strain. Int J Cancer 23: 826–832, 1979.

    Google Scholar 

  35. Bowen JG, Baldwin RW. Tumour antigens and alloantigens. II. Lack of association of rat hepatoma-D 23-specific antigen with Beta-2 microglobulin. Int J Cancer 23: 833–839,1979.

    Google Scholar 

  36. Rosenberg SA (ed.). Serological analysis of human cancer antigens. New York: Academic Press, 1980.

    Google Scholar 

  37. Shimano T, Loor RM, Papsidero LD, Kuriyama M, Vincent RG, Nemoto T, Holyoke ED, et al. Isolation, characterization and clinical evaluation of pancreas cancer-associated antigen. Cancer 47: 1602–1613, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Banwo O, Versey J, Hobbs JR. New oncofetal antigen for human pancreas. Lancet 1: 643–645, 1974.

    Article  PubMed  CAS  Google Scholar 

  39. Natali PG, Imai K, Wilson BS, Bigotti A, Cavaliere R, Pellegrino MA, Ferrone S. Structural properties and tissue distribution of the antigen recognized by the monoclonal antibody 653.405 to human melanoma cells. J Natl Cancer Inst 67: 591–601, 1981.

    PubMed  CAS  Google Scholar 

  40. Rees RC, Potter CW. In vivo studies of cell-mediated and humoral immune response to adenovirus 12-induced tumour cells. Arch ges Virusforsch 41: 116–126, 1973.

    Google Scholar 

  41. Dubois G, Appella E, Law LW, Deleo AB, Old LJ. Immunogenic properties of soluble cytosol fractions of Meth-A sarcoma cells. Cancer Res 40: 4204–4208, 1980.

    PubMed  CAS  Google Scholar 

  42. Howell SB, Dean JH, Esber EC, Law LW. Cell interactions in adoptive immune rejection of a syngeneic tumour. Int J Cancer 14: 662–674, 1974.

    Article  PubMed  CAS  Google Scholar 

  43. Winn HJ. Immune mechanisms in homotransplantation. II. Quantitative assay of the immunologic activity of lymphoid cells stimulated by tumour homograft. J Immunol 86: 228–239, 1961.

    PubMed  CAS  Google Scholar 

  44. Crumm ED. Lymphocytes that mediate systemic resistance to in vivo growth of carcinogenic/induced syngeneic tumour. Int J Cancer 26: 53–60, 1980.

    Article  Google Scholar 

  45. Chauvenet PH, McArthur CP, Smith RT. Demonstration in vitro of cytotoxic T-cell with apparent specificity toward tumour-transplantation antigens on chemically induced tumours. J Immunol 123: 2575–2581, 1979.

    PubMed  CAS  Google Scholar 

  46. Boon T, Van Snick J, Van Pel A, Uyttenhove C, Marchand M. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T-lymphocyte-mediated cytolysis. J Exp Med 152: 1184–1193, 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Carbone G, Colombo MP, Sensim L, Cernuschi A, Parmiani G. In vitro detection of cell-mediated immunity to individual tumour-specific antigens of chemically induced BALB/c fibrosarcomas. Int J Cancer 31: 483–489, 1983.

    Google Scholar 

  48. Ting CC, Rodrigues D, Nordan R. Studies on the mechanism for the induction of in vivo tumour immunity. VI. Induction of specific and non-specific cell-mediated immunity in tumour bearing host and its correlation with transplantation tumour immunity. Cellular Immunol 66: 45–58, 1982.

    Article  CAS  Google Scholar 

  49. Gooding LR, Edwards CB. H-2 antigen requirement in the in vitro induction of SV40-specific cytotoxic T-lymphocytes. J Immunol 124: 1258–1262, 1980.

    PubMed  CAS  Google Scholar 

  50. Shimizu K, Shen FW. Role of different T-cell subsets in the rejection of syngeneic chemically-induced tumours. J Immunol 122: 1162–1165, 1979.

    PubMed  CAS  Google Scholar 

  51. Kaufmann SHE, Simon MM, Hahan H. Specific Lyt-1,2,3 T-cells are involved in protection against Listeria monocytogenes and in delayed-type hypersensitivity to listerial antigens. J Exp Med 150: 1033–1038, 1979.

    Article  PubMed  CAS  Google Scholar 

  52. Wettstein PJ, Bailey DW, Mobraaten LE, Klein J, Frelinger JA. T-lymphocyte response to H-2 mutants: Cytotoxic effectors are Lyt-l + 2 +. Proc Natl Acad Sci 76: 3455–3459, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Prat M, DiRenzo MP, Comoglio PM. Characterisation of T-lymphocytes mediating in vivo protection against RSV-induced murine sarcomas. Int J Cancer 31: 757–764, 1983.

    Article  PubMed  CAS  Google Scholar 

  54. Robbins RA, Baldwin RW. Role of T-lymphocyte subsets in tumour rejection. Implications for developing biological response modifiers and monitoring tumour-host interactions during tumour development. J Biol Resp Mod 2: 101–109, 1983.

    Google Scholar 

  55. Baldwin RW. In vitro assays of cell-mediated immunity to human solid tumours: Problems of quantitation, specificity and interpretation. J Natl Cancer Inst 55: 745–748, 1975.

    PubMed  CAS  Google Scholar 

  56. Herberman RB, Oldham RK. Problems associated with study of cell mediated immunity to human tumors by microcytotoxicity assays. J Natl Cancer Inst 55: 749–753, 1975.

    PubMed  CAS  Google Scholar 

  57. Loveland BE, McKenzie IFC. Which T-cells cause graft rejection? Transplantation 33: 217–221, 1982.

    PubMed  CAS  Google Scholar 

  58. Dallman MJ, Mason DW. Role of thymus derived and thymus independent cells in murine skin allograft rejection. Transplantation 33: 221–223, 1982.

    Article  PubMed  CAS  Google Scholar 

  59. Wang KC, Berczi I, Sehon AH. Effector and enhancing lymphoid cells in plasmacytoma–bearing mice. I. Methodological studies on the Winn assay. Int J Cancer 25: 487–492, 1980.

    Article  PubMed  CAS  Google Scholar 

  60. Bhan AK, Perry LL, Cantor H, McCluskey RT, Benacerraf B, Greene MI. The role of T-cell sets in the rejection of a methylcholanthrene induced sarcoma (SI509a) in syngeneic mice. Am J Pathol 102: 20–27, 1981.

    PubMed  CAS  Google Scholar 

  61. Nelson M, Nelson DS, McKenzie IFC, Blanden RV. Thy and Ly markers on lymphocytes initiating tumour rejection. Cell Immunol 60: 34–42, 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Loveland BE, McKenzie IFC. Cells mediating graft rejection in the mouse. IV. The Lyt-5,6 and 7 effector cell phenotype. Transplantation 33: 411–413, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Loveland BE, McKenzie IFC. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J Exp Med 153: 1044–1057, 1981.

    Article  PubMed  CAS  Google Scholar 

  64. Loveland BE, McKenzie IFC. Cells mediating graft rejection in the mouse. II. The Lyt phenotype of cells producing tumor allograft rejection. Transplantation 33: 174–180, 1982.

    Article  PubMed  CAS  Google Scholar 

  65. Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA. T-cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med 152: 280–295, 1980.

    Article  PubMed  CAS  Google Scholar 

  66. Klein E, Klein G. Specificity of the homograft rejection in vivo, assessed by inoculation of artificially mixed compatible and incompatible tumor cells. Cell Immunol 5: 201–208, 1972.

    Article  Google Scholar 

  67. Weissman IL. Tumor immunity in vivo: Evidence that immune destruction of tumor leaves “bystander” cells intact. J Natl Cancer Inst 51: 443–448, 1973.

    PubMed  CAS  Google Scholar 

  68. Bast RC, Zbar B, Rapp HJ. Local antitumor activity of a primary and an anamnestic response to a syngeneic guinea pig hepatoma. J Natl Cancer Inst 55: 989–994, 1975.

    PubMed  Google Scholar 

  69. Galli SJ, Bast RC, Bast BS, et al. Bystander suppression of tumor growth: Evidence that specific targets and bystanders are damaged by injury to a common microvasculature. J Immunol 129: 890–899, 1982.

    PubMed  CAS  Google Scholar 

  70. Fidler IJ, Hart IR. The origin of metastatic heterogeneity in tumours. Europ J Cancer 17: 487–494, 1981.

    Article  CAS  Google Scholar 

  71. Di-Renzo MF, Bretti S. Characterization of stable spontaneous metastatic variant lines of RSV-transformed mouse fibroblast. Int J Cancer 30: 751–757, 1982.

    Article  PubMed  CAS  Google Scholar 

  72. Trope C. Different sensitivity to cytostatic drugs of primary tumour and metastasis of the Lewis lung carcinoma. Neoplasma 22: 171–180, 1975.

    PubMed  CAS  Google Scholar 

  73. Fidler IJ, Nicolson GL. Organ selectivity for implantation survival and growth of B16 melanoma variant tumour lines. J Natl Cancer Inst 57: 1199–1202, 1976.

    PubMed  CAS  Google Scholar 

  74. Rabotti G. Ploidy of primary and metastatic human tumours. Nature 183: 1276–1277, 1959.

    Article  PubMed  CAS  Google Scholar 

  75. Chatterjee SK, Kim O. Fucosyl transferase activity in metastasizing and non-metastasizing rat mammary carcinomas. J Natl Cancer Inst 61: 151–162, 1978.

    PubMed  CAS  Google Scholar 

  76. Schirrmacher V, Bosslet K, Shantz G, Glawer K, Hubsch D. Tumour metastases and cell mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between a metastasizing variant and the parental tumour line revealed by cytotoxic T-lymphocytes. Int J Cancer 23: 245–252, 1979.

    Article  PubMed  CAS  Google Scholar 

  77. Kerbel RS. Immunological studies of membrane mutants of a highly metastatic murine tumour. Am J Path 97: 609–622, 1979.

    PubMed  CAS  Google Scholar 

  78. Marganski JL. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. Occasional escape from host rejection due to antigen-loss secondary variants. Int J Cancer 31: 119–123, 1983.

    Article  Google Scholar 

  79. Broder S, Mool L, Waldmann TA. Suppressor cells in neoplastic disease. J Natl Cancer Inst 61: 5–11, 1978.

    PubMed  CAS  Google Scholar 

  80. Holden HT, Haskill JS, Kirchner H, et al. Two functionally distinct anti-tumour effector cells isolated from primary murine sarcoma virus-induced tumours. J Immunol 117: 440–446, 1976.

    PubMed  CAS  Google Scholar 

  81. Yu A, Watts M, Jaffe N, Parkman R. Concomitant presence of tumour-specific cytotoxic and inhibitor lymphocytes in patients with osteogenic sarcoma. N Engl J Med 297: 121–127, 1977.

    Article  PubMed  CAS  Google Scholar 

  82. Goodwin JS, Messner RP, Bankurst AD, Peak GT, Saike JM, Williams RC. Prostaglandin producing suppressor cells in Hodgkin’s disease. N Engl J Med 297: 963–968, 1977.

    Article  PubMed  CAS  Google Scholar 

  83. Ting CC, Rodrigues D, Ting RC, Wyvel N, Collins MJ. Suppression of T-cell mediated immunity by tumour cells: Immunogenicity versus immunosuppression and preliminary characterisation of the suppressor factors. Int J Cancer 24: 644–655, 1979.

    Article  PubMed  CAS  Google Scholar 

  84. Frost P, Prete P, Kerbel R. Abrogation of the in vitro generation of the cytotoxic T-cell response to a murine tumour: The role of suppressor cells. Int J Cancer 30: 211–217, 1982.

    Article  PubMed  CAS  Google Scholar 

  85. Pope BL, Whitney RB, Levy JG, Kilburn DG. Suppressor cells in the spleen of tumour-bearing mice: Enrichment by centrifugation on highpaque-ficoll and characterisation of the suppressor population. J Immunol 116: 1342–1346, 1976.

    PubMed  CAS  Google Scholar 

  86. Veit BC, Feldman JD. Altered lymphocyte functions in rats bearing syngeneic Moloney sarcoma tumours. II. Suppressor cells. J Immunol 117: 655–660, 1976.

    PubMed  CAS  Google Scholar 

  87. Yamagishi H, Pellis NR, Margalit B, Mokyr MB, Kahn BD. Specific and non-specific immunologic mechanisms of tumour growth facilitation. Cancer 45: 2929–2933, 1980.

    Article  PubMed  CAS  Google Scholar 

  88. Treves AS, Carnaud C, Trainin N, Feldman M, Cohen IR. Enhancing T-lymphocytes from tumour-bearing mice suppressed host resistance to a syngeneic tumour. New Look J Immunol 4: 722–727, 1974.

    CAS  Google Scholar 

  89. Fujimoto S, Greene MI, Sehon AH. Regulation of the immune response to tumour antigens. I. Immuno-suppressor cells in tumour bearer hosts. J Immunol 116: 791–799, 1976.

    PubMed  CAS  Google Scholar 

  90. Fujimoto S, Greene MI, Sehon MH. Regulation of the immune response to tumour antigens. II. The nature of immune-suppressor cells in tumour-bearing hosts. J Immunol 116: 800–806, 1976.

    PubMed  CAS  Google Scholar 

  91. Deutsch O, Devens B, Naor D. Immune responses to weakly immunogenic murine leukaemia-virus induced tumours. VIII. Characterisation of suppressor cells. Isr J Med Sci 16: 538–544, 1980.

    PubMed  CAS  Google Scholar 

  92. Mule JJ, Stanton TH, Helstrom I, Helstrom KE. Suppressor pathways in tumour immunity: A requirement for Qa-1+ tumour–bearer spleen T-cells in suppression of the afferent immune response to tumour antigens. Int J Cancer 28: 353–359, 1981.

    Article  PubMed  CAS  Google Scholar 

  93. Mianami A, Mizushimi Y, Takeichi N, Hosokawa M, Kobayashi H. Dissociation of antitumour immune responses in rats immunised with soluble tumour associated antigens from methyl-cholanthrene-induced fibrosarcomas. Int J Cancer 23: 358–365, 1979.

    Article  Google Scholar 

  94. Hellstrom KE, Hellstrom I. Cell mediated suppression of tumour immunity has a non-specific component.Evidence from transplantation tests. Int J Cancer 27: 487–485, 1981.

    Article  PubMed  CAS  Google Scholar 

  95. Hellstrom I, Hellstrom KE. Cell-mediated suppression of tumour immunity has a non-specific component.II.Evidence from cell culture experiments. Int J Cancer 27: 487–491, 1981.

    Article  PubMed  CAS  Google Scholar 

  96. Cerottini JC, Brunner KT. Cell-mediated cytotoxicity, allograft rejection, and tumour immunity. Adv Immunol 18: 67–132, 1974.

    Article  PubMed  CAS  Google Scholar 

  97. Hellstrom I, Hellstrom KE, Pierce GE, Yang JPS. Cellular and humoral immunity to different types of human neoplasms. Nature 220: 1352–1354, 1968.

    Article  PubMed  CAS  Google Scholar 

  98. Hellstrom I, Hellstrom KE, Sjogren HO. Demonstration of cell-mediated immunity to human neoplasms of various histological types. Int J Cancer 7: 1–16, 1971.

    Article  PubMed  CAS  Google Scholar 

  99. O’Toole C, Perlmann P, Unsgaard B, et al. Lymphocyte cytotoxicity in bladder cancer. No requirement for thymus-derived effector cells. Lancet 1: 1085–1088, 1973.

    Article  Google Scholar 

  100. Herberman RB. Cell mediated immunity to tumour cells. Adv Cancer Res 19: 207–263, 1974.

    Article  PubMed  CAS  Google Scholar 

  101. Oldham RK, Siwarski D, McCoy JL, Plata EJ, Herberman RB. Evaluation of a cell-mediated cytotoxicity assay utilizing 125 iododeoxyuridine-labelled tissue culture target cells. Natl Cancer Inst Monogr 37: 49–58, 1973.

    PubMed  CAS  Google Scholar 

  102. Takasugi M, Mickey MR, Terasaki PI, Reactivity of lymphocytes from normal persons on cultured tumour cells. Cancer Res 33: 2892–2902, 1973.

    Google Scholar 

  103. Herberman RB, Nunn ME, Lavrin DH, Asofsky R. Effect of antibody to theta antigen on cell-mediated immunity induced in syngeneic mice by murine sarcoma virus. J Natl Cancer Inst 51: 1509–1512, 1973.

    PubMed  CAS  Google Scholar 

  104. Oldham RK, Herberman RB. Evaluation of cell-mediated cytotoxic reactivity against tumour associated antigens with 1251-iododeoxyuridine labelled target cells. J Immunol 111: 862–871, 1973.

    PubMed  CAS  Google Scholar 

  105. Le Mevel BP, Wells SA Jr. A microassay for the quantitation of cytotoxic antitumour antibody: Use of 125-I-iododeoxyuridine as a tumour cell label. J Natl Cancer Inst 50: 803–806, 1973.

    Google Scholar 

  106. De Vries JE, Cornain S, Rumke P. Cytotoxicity of non-T versus T-lymphocytes from melanoma patients and healthy donors on short-and long-term cultured melanoma cells. Int J Cancer 14: 427–434, 1974.

    Article  PubMed  Google Scholar 

  107. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumours. I. Distribution of reactivity and specificity. Int J Cancer 16: 216–229, 1975.

    Article  PubMed  CAS  Google Scholar 

  108. Herberman RB, Nunn ME, Holden HT, et al. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumours. II. Characterization of effector cells. Int J Cancer 16: 230–239, 1975.

    Article  PubMed  CAS  Google Scholar 

  109. Kiessling R, Klein E, Wigzell H. Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukaemia cells. Specificity and distribution according to genotype. Eur J Immunol 5: 112–117, 1975.

    Article  PubMed  CAS  Google Scholar 

  110. Kiessling R, Petranyi G, Klein G. Wigzell H. Non T-cell-resistance against a mouse Moloney lymphoma. Int J Cancer 17: 275–281, 1976.

    Article  PubMed  CAS  Google Scholar 

  111. Saksela E, Timonen T, Ranki A, Hayry P. Morphological and functional characterization of isolated effector cells responsible for human natural killer activity to fetal fibroblasts and to cultured cell line targets. Immunol Rev 44: 77–123, 1979.

    Article  Google Scholar 

  112. Timonen T, Saksela E, Ranki A, Hayry P. Fractionation, morphological and functional chacterization of effector cells responsible for human natural killer activity against cell-line targets. Cell Immunol 48: 133–148, 1979.

    Article  PubMed  CAS  Google Scholar 

  113. Timonen T, Ranki A, Saksela E, Hayry P. Human natural cell-mediated cytotoxicity against fetal fibroblasts. III. Morphological and functional characterization of the effector cells. Cell Immunol 48, 121–132, 1979.

    Article  PubMed  CAS  Google Scholar 

  114. Timonen T, Reynolds CW, Ortaldo JR, Herberman RB. Isolation of human and rat natural killer cells. J Immunol Methods 51: 269–277, 1982.

    Article  PubMed  CAS  Google Scholar 

  115. Kurnick JT, Ostberg L, Stegagno M, Kimura AK, Orn A, Sjoberg O. A rapid method for the separation of functional lymphoid cell populations of human and animal origin on PVP-silica (Percoll) density gradients. Scand J Immunol 10: 563–573, 1979.

    Article  PubMed  CAS  Google Scholar 

  116. Timonen T, Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Methods 36: 285–291, 1980.

    Article  PubMed  CAS  Google Scholar 

  117. Timonen T, Ortaldo JR, Herberman RB. Characteristics of human large granular lymphocytes and relationship to natural killer and K-cells. J Exp Med 153: 569–582, 1981.

    Article  PubMed  CAS  Google Scholar 

  118. Reynolds CW, Timonen T, Herberman RB. Natural killer (NK) cell activity in the rat. I. Isolation and characterisation of the effector cells. J Immunol 127: 282–287, 1981.

    PubMed  CAS  Google Scholar 

  119. Abo T, Balch CM. Differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127: 1024–1029, 1981.

    PubMed  CAS  Google Scholar 

  120. Abo T, Cooper MD, Balch CM. Characterization of HNK-1+ (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capacity. J Immunol 129: 1752–1757, 1982.

    PubMed  CAS  Google Scholar 

  121. Balch CM, Ades EW, Loken MR, Shore SL. Human “null” cells mediating antibody-dependent cellular cytotoxicity express T-lymphocyte differentiation antigens. J Immunol 124: 1845–1851, 1980.

    PubMed  CAS  Google Scholar 

  122. Kaplan J, Callwaert DM, Peterson WD. Expression of human T-lymphocyte antigens by killer cells. J Immunol 121: 1366–1369, 1978.

    PubMed  CAS  Google Scholar 

  123. Kaplan J, Callewaert DM. Expression of human T-lymphocyte antigens by natural killer cells. J Natl Cancer Inst 60: 961–964, 1978.

    PubMed  CAS  Google Scholar 

  124. Lohmann-Matthes ML, Domzing W, Roder JC. Promonocytes have the functional characteristics of natural killer cells. J Immunol 123: 1883–1886, 1979.

    PubMed  CAS  Google Scholar 

  125. Lohmann-Matthes ML, Domzing W, Taskov H. Antibody-dependent cellular cytotoxicity against tumour cells. I. Cultivated bone marrow-derived macrophages kill tumour targets. Eur J Immunol 9: 261–266, 1979.

    Article  PubMed  CAS  Google Scholar 

  126. Domzing W, Lohmann-Matthes ML. Antibody dependent cellular cytotoxicity against tumour cells. II. The promonocyte identified as effector cell. Eur J Immunol 9: 267–272, 1979.

    Google Scholar 

  127. Breard J, Reinherz EL, Kung PC, Goldstein G, Schlossman SF. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol 124: 1943–1948, 1980.

    PubMed  CAS  Google Scholar 

  128. Zarling JM, Kung PC. Monoclonal antibodies which distinguish between human NK cells and cytotoxic T-lymphocytes. Nature 288: 394–396, 1980.

    Article  PubMed  CAS  Google Scholar 

  129. Ault KA, Springer TA. Cross-section of a rat-anti-mouse phagocyte-specific monoclonal antibody (anti- Mac-1) with human monocytes and natural killer cells. J Immunol 126: 359–364, 1981.

    PubMed  CAS  Google Scholar 

  130. Ortaldo JR, Sharrow SO, Timonen T, Herberman RB. Determination of surface antigens on highly purified human NK cells by flow cytometry with monoclonal antibodies. J Immunol 127: 2401–2409, 1981.

    PubMed  CAS  Google Scholar 

  131. Kay HD, Horwitz DA. A monoclonal antibody reactive with human peripheral blood monocytes. J Immunol 124: 1943–1948, 1980.

    Google Scholar 

  132. Abo T, Balch CM. Characterization of HNK-1+ (Leu-7) human lymphocytes. II. Distinguishing phenotypic and functional properties of natural killer cells from activated NK-like cells. J Immunol 129: 1758–1761, 1982.

    PubMed  CAS  Google Scholar 

  133. Abo T, Cooper MD, Balch CM. Postnatal expansion of the natural killer and killer cell population in humans. Identified by the monoclonal HNK-1 antibody. J Exp Med 155: 321–326, 1982.

    Article  PubMed  CAS  Google Scholar 

  134. Herberman RB. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980.

    Google Scholar 

  135. Ferrarini M, Romagnani S, Montesoro E, Zicca A, Del Preto GF, Nocera A, Maggi E, Leprini A, Grossi CE. Lymphoproliferative disorder of the large granular lymphocytes with natural killer activity. J Clin Immunol 3: 30–41, 1983.

    Article  PubMed  CAS  Google Scholar 

  136. Dennert G, Yogeeswaran G, Yamagata S. Cloned cell lines with natural killer activity specificity, function, and cell surface markers. J Exp Med 153: 545–556, 1981.

    Article  PubMed  CAS  Google Scholar 

  137. Henney CS, Lichtenstein LM, Gillespie E, Roley RT. In vivo suppression of immune response to alloantigen by cholera toxin. J Clin Invest 52: 2853–2857, 1973.

    Google Scholar 

  138. Golstein P, Smith ET. The lethal hit stage of mouse T and non-T-cell-mediated cytolysis: Differences in cation requirements and characterization of an analytical “cation pulse” method. Eur J Immunol 6: 31–37, 1976.

    Article  PubMed  CAS  Google Scholar 

  139. Martz E. Mechanism of specific tumour–cell lysis by alloimmune T-lymphocytes: Resolution and characterization of discrete steps in the cellular interaction. Contemp Top Immunobiol 7: 301–361, 1977.

    PubMed  CAS  Google Scholar 

  140. Becker FF, Klein E. Decreased “natural killer” effect in tumour bearer mice and its relation to the immunity against oncornavirus-determined cell surface antigens. Eur J Immunol 6: 892–898, 1976.

    Article  Google Scholar 

  141. Shellam GR, Hogg N. Cross–virus–induced lymphoma in the rat. IV. Cytotoxic cells in normal rats. Int J Cancer 19: 212–224, 1977.

    Google Scholar 

  142. Sendo F, Aoki T, Boyse EA, Buofo CK. Natural occurrence of lymphocytes showing cytotoxic activity to BALB/c radiation–induced leukaemia RL male 1 cells. J Natl Cancer Inst 55: 603–609, 1975.

    PubMed  CAS  Google Scholar 

  143. Zarling JM, Nowinski N, Bach FH. Lysis of leukaemia cells by spleen cells of normal mice. Proc Natl Acad Sci USA 72: 2780–2784, 1975.

    Article  PubMed  CAS  Google Scholar 

  144. Kiessling R, Haller O. Natural killer cells in the mouse: An alternative immune surveillance mechanism. Contemp Top Immunobiol 8: 171–201, 1978.

    Google Scholar 

  145. Nunn ME, Herberman RB, Holden HT. Natural cell-mediated cytotoxicity in mice against non-lymphoid tumour cells and some normal cells. Int J Cancer 20: 381–387, 1977.

    Article  PubMed  CAS  Google Scholar 

  146. Stutman T, Paige CJ, Figarella FE. Natural cytotoxic cells against solid tumours in mice. I. Strain and age distribution and target cell susceptibility. J Immunol 121: 1819–1826, 1978.

    PubMed  CAS  Google Scholar 

  147. Hansson M, Karre K, Bakacs T, Kiessling R, Klein G. Intra- and interspecies reactivity of human and mouse natural killer (NK) cells. J Immunol 121: 6–12, 1978.

    PubMed  CAS  Google Scholar 

  148. Herberman RB, Holden HT. Natural cell-mediated immunity. Adv Cancer Res 27: 305–377, 1978.

    Article  PubMed  CAS  Google Scholar 

  149. Ojo E, Haller O, Kimura A, Wigzell H. An analysis of conditions allowing Corynebacterium parvum to cause either augmentation or inhibition of natural killer cell activity against tumour cells in mice. Int J Cancer 21: 444–452, 1978.

    Article  PubMed  CAS  Google Scholar 

  150. Haller O, Kiessling R, Orn A, Karre K, Nilsson K, Wigzell H. Natural cytotoxicity to human leukaemias mediated by mouse non-T cells. Int J Cancer 20: 93–103, 1977.

    Article  PubMed  CAS  Google Scholar 

  151. Callwaert DM, Kaplan J, Peterson WD Jr, Lightbody JJ. Spontaneous cytotoxicity of human lymphoblast cell lines mediated by normal peripheral blood lymphocytes. I. Differential susceptiblility of T-versus B-cell lines. Cell Immunol 33: 11–19, 1977.

    Article  Google Scholar 

  152. Pross HF, Jondal M. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clin Exp Immunol 21: 226–235, 1975.

    Google Scholar 

  153. Petranyi GG, Benczur M, Onody CE, Holland SR. HLA 3,7 and lymphocyte cytotoxic activity. Lancet 1: 736, 1974.

    Article  PubMed  CAS  Google Scholar 

  154. Santoli D, Trinchieri G, Zmijewski CM, Koprowski H. HLA-related control of spontaneous and antibody-dependent cell mediated cytotoxic activity in humans. J Immunol 117: 765–770, 1976.

    PubMed  CAS  Google Scholar 

  155. Haller O, Gidlund M, Kurnick JT, Wigzell H. In vivo generation of mouse natural killer cells: Role of the spleen and thymus. Scand J Immunol 8: 207–213, 1978.

    Google Scholar 

  156. Roder JC, Ahrlund-Richter L, Jondal M. Target-effector interaction in the human and murine natural killer system. Specificity and xenogeneic reactivity of the solubilized natural killer target structure complex and its loss in a somatic cell hybrid. J Exp Med 150: 471–487, 1979.

    Article  PubMed  CAS  Google Scholar 

  157. Roder JC, Rosen A, Fenjo EM, Troy FA. Target-effector interaction in the natural killer cell system: Isolation of target structures. Proc Natl Acad Sci USA 76: 1405–1409, 1979.

    Article  PubMed  CAS  Google Scholar 

  158. Roder JC. Target-effector interaction in the natural killer (NK) cell system. VI. The influence of age and genotype on NK binding characteristics. Immunology 41: 483–489, 1980.

    PubMed  CAS  Google Scholar 

  159. Nunn ME, Herberman RB. Natural cytotoxicity of mouse, rat, and human lymphocytes against heterologous target cells. J Natl Cancer Inst 62: 765–771, 1979.

    PubMed  CAS  Google Scholar 

  160. Welsh RM. Mouse natural killer cells: Induction, specificity, and function. J Immunol 121: 1631–1635, 1978.

    PubMed  Google Scholar 

  161. Gidlund M, Orn A, Wigzell A, Gresser I. Enhanced NK activity in mice injected with interferon and interferon inducers. Nature 273: 759–761, 1978.

    Article  PubMed  CAS  Google Scholar 

  162. Wolfe SA, Tracey DE, Henney CS. Induction of “natural killer” cells by BCG. Nature 262: 1584–1586, 1976.

    Article  Google Scholar 

  163. Herberman RB, Nunn ME, Holden HT, Staals S, Djeu JY. Augmentation of natural cytotoxicity against syngeneic and allogeneic target cells. Int J Cancer 19: 555–564, 1977.

    Article  PubMed  CAS  Google Scholar 

  164. Welsh RM, Zinkernagel RM. Heterospecific cytotoxic cell-activity induced during the first three days of acute lymphocytic choriomeningitis virus infection in mice. Nature 268: 646–648, 1977.

    Article  PubMed  Google Scholar 

  165. MacFarlan RI, Burns WH, While DO. Two cytotoxic cells in the peritoneal cavity of virus-infected mice: Antibody dependent macrophages and non-specific killer cells. J Immunol 119: 1569–1574, 1977.

    PubMed  CAS  Google Scholar 

  166. Tracey DE, Wolfe SA, Durdik JM, Henney CS. BCG-induced murine effector cells. I. Cytolytic activity in peritoneal exudates: An early response to BCG. J Immunol 119: 1145–1151, 1977.

    PubMed  CAS  Google Scholar 

  167. Welsh RM, Zinkernagel RM, Hallenbeck LA. Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. II. Specificities of the natural killer cells. J Immunol 122: 475–481, 1979.

    PubMed  Google Scholar 

  168. Kiessling R, Eriksson E, Hallenbeck LA, Welsh RM. A comparative analysis of the cell surface properties of activated versus endogenous mouse natural killer cells. J Immunol 125: 1551–1557, 1980.

    PubMed  CAS  Google Scholar 

  169. Welsh RM, Doe WF. Cytotoxic cells induced lymphocytic choriomeningitis virus infection of mice. III. Natural killer activity in cultured spleen leukocytes concomitant with T-cell-dependent immune IFN production. Infect Immun 30: 473–483, 1980.

    Google Scholar 

  170. Kunkel LA, Welsh RM. Metabolic inhibitors render “resistant” target cells sensitive to natural killer cell-mediated lysis. Int J Cancer 27: 73–79, 1981.

    Article  PubMed  CAS  Google Scholar 

  171. Hiserodt JC, Britvan J, Targan S. Differential effects of various pharmacologic agents on the cytotoxic reaction mechanism of the human natural killer lymphocyte: Further resolution of programming for lysis and KCIL into discrete stages. J Immunol 129: 2266–2270, 1982.

    PubMed  CAS  Google Scholar 

  172. Quan PC, Ishizaka T, Bloom BR. Studies on the mechanism of NK cell lysis. J Immunol 128: 1786–1791, 1982.

    PubMed  CAS  Google Scholar 

  173. Neighbour PS, Huberman HS. Sr++-induced inhibition of human natural killer (NK) cell-mediated cytotoxicity. J Immunol 128: 1236–1240, 1982.

    PubMed  CAS  Google Scholar 

  174. Roder JC, Halliotis T. A comparative analysis of the NK cytolytic mechanism and regulatory genes. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980, pp. 379–389.

    Google Scholar 

  175. Carpen O, Virtanen I, Saksela E. The cytotoxic activity of human natural killer cells requires an intact secretory apparatus. Cell Immunol 58: 97–106, 1981.

    Article  PubMed  CAS  Google Scholar 

  176. Neville ME, Hiserodt JC. Inhibition of human antibody-dependent cellular cytotoxicity, cell mediated cytotoxicity, and natural killing by xenogeneic antiserum prepared against “activated” autoimmune human lymphocytes. J Immunol 128: 1246–1251, 1982.

    PubMed  CAS  Google Scholar 

  177. Yamamoto RS, Hiserodt JC, Granger GA. The human LT system: V. A comparison of the relative lytic effectiveness of various MW human LT classes on 51Cr-labelled allogeneic target cells in vitro: Enhanced lysis by LT complexes associated with Ig-like receptor(s). Cell Immunol 45: 261–275, 1979.

    Article  PubMed  CAS  Google Scholar 

  178. Wright S, Bonavida B. Selective lysis of NK-sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J Immunol 126: 1516–1521, 1981.

    PubMed  CAS  Google Scholar 

  179. Farram E, Targan SR. Identification of human natural killer soluble cytotoxic factor(s) (NKCF) derived from NK-enriched lymphocyte populations: Specificity of generation and killing. J Immunol 130: 1252–1256, 1983.

    PubMed  CAS  Google Scholar 

  180. Hoffman T, Hirata F, Bougnoux P, Fraser BA, Goldfarb RH, Herberman RB. Phospholipid methylation and phospholipase A2 activation in cytotoxicity by human natural killer cells. Proc Natl Acad Sci 78: 3839–3843, 1981.

    Article  PubMed  CAS  Google Scholar 

  181. Goldfarb RH, Timonen T, Herberman RB. Mechanism of tumour cell lysis by natural killer cells. Adv Exp Med Biol 146: 403–421, 1982.

    PubMed  CAS  Google Scholar 

  182. Hudig D, Haverly T, Fucher C, Redelman D, Mendelsohn J. Inhibition of human natural cytotoxicity by macromolecular antiproteases. J Immunol 126: 1569–1574, 1981.

    PubMed  CAS  Google Scholar 

  183. Lavie G, Weiss H, Pick A, Franklin EC. The role of surface associated proteases in lymphocyte spontaneous cytotoxic activity. Fourth Congress of Immunology Abstracts 11. 4, 30, 1980.

    Google Scholar 

  184. Djeu JY, Heinbough J A, Viera WD, Holden HT, Herberman RB. The effect of immunopharmacologic agents on mouse natural cell-mediated cytotoxicity and its augmentation by poly I-C. Immunopharmacology 1: 231–244, 1979.

    Article  PubMed  CAS  Google Scholar 

  185. Trinchieri G, Santoli D, Dee RR, Knowles BB. Anti-viral activity induced by culturing lymphocytes with tumour-derived or virus-transformed cells. J Exp Med 147: 1299–1313, 1978.

    Article  PubMed  CAS  Google Scholar 

  186. Einhorn S, Blomgren H, Strander H. Interferon and spontaneous cytotoxicity in man. I. Enhancement of the spontaneous cytotoxicity of peripheral lymphocytes by human leukocyte interferon. Int J Cancer 22: 405–412, 1978.

    Google Scholar 

  187. Herberman RB. Overview on NK cells and possible mechanisms for their cytotoxic activity. Adv Exp Med Biol 146: 337–351, 1982.

    PubMed  CAS  Google Scholar 

  188. Platsoucas CD. Analysis of human natural killer cells by monoclonal antibodies. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 67–72.

    Google Scholar 

  189. Lee SH, Kelley S, Chin H, Stebbing N. Stimulation of natural killer cell activity and inhibition of proliferation of various leukemic cells by purified human leukocyte interferon subtypes. Cancer Res 42: 1312–1316, 1982.

    PubMed  CAS  Google Scholar 

  190. Gustafsson A, Lundgren E. Augmentation of natural killer cells involves both enhancement of lytic machinery and expression of new receptors. Cell Immunol 62: 367–376, 1981.

    Article  PubMed  CAS  Google Scholar 

  191. Djeu JY, Stocks N, Varesio L, Holden HT, Herberman RB. Metabolic requirements for the in vitro augmentation of mouse natural killer activity by interferon. Cell Immunol 58: 49–60, 1981.

    Article  PubMed  CAS  Google Scholar 

  192. Ortaldo JR, Phillips W, Wasserman K, Herberman RB. The effect of metabolic inhibitors on spontaneous and IFN boosted human natural killer cell activity. J Immunol 125: 1839–1844, 1980.

    PubMed  CAS  Google Scholar 

  193. Gustafsson A, Sundstrom S, Ny T, Lundgren E. Rapid induction of seven proteins in human lymphocytes by interferon, correlation to natural killer cell activity. J Immunol 129: 1952–1959, 1982.

    PubMed  CAS  Google Scholar 

  194. Ortaldo JR, Mantovani A, Hobbs D, Robinstein M, Pestka S, Herberman RB. Effects of several species of human leukocyte interferon on cytolytic activity of NK cells and monocytes. Int J Cancer 31: 285–289, 1983.

    Article  PubMed  CAS  Google Scholar 

  195. Lotzova E, Savary CA, Gutterman JU, Hersh EM. Modulation of natural killer cell–mediated cytotoxicity by partially purified and cloned interferonalpha. Cancer Res 42: 2480–2488, 1982.

    PubMed  CAS  Google Scholar 

  196. Carter SK. The clinical trial evaluation strategy for interferons and other biological response modifiers- Not a simple task. J Biol Resp Modif 1: 101–105, 1982.

    Google Scholar 

  197. Strander H, Cantell K. Production of interferon by human leukocytes in vitro. Ann Med Expl Biol Fenn 44: 265–273, 1966.

    CAS  Google Scholar 

  198. Mogensen KE, Cantell K. Production and preparation of human leukocyte interferon. Pharm Ther C 1: 369–383, 1977.

    CAS  Google Scholar 

  199. Southam CM. Present status of oncolytic virus studies. Trans NY Acad Sci 83: 551–572, 1960.

    Google Scholar 

  200. Southam CM, Moore AE. Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer 5: 1025–1030, 1952.

    Article  PubMed  CAS  Google Scholar 

  201. Mathe G, Amiel L, Schwarzenberg L, Schneider M, Hayat M, DeVassal F, Jasmin C, Rosenfeld C, Choay J. Remission induction with poly IC in patients with acute lymphatic leukemia. Europ J Clin Biol Res 15: 671–684, 1970.

    CAS  Google Scholar 

  202. Thatcher N, Swindell R, Crowther D. Effect of repeated Corynebacterium parvum and BCG therapy on immune parameters: A weekly sequential study of melanoma patients. 1. Changes in non-specific (NK, K, and T cell) lymphocytotoxicity, peripheral blood counts and delayed hypersensitivity reactions. Clin Exp Immunol 36: 227–236, 1979.

    Google Scholar 

  203. Gutterman JU, Blumenschein GR, Alexanian R, Hwee-Yong Y, Buzdar AU, Cambanillar F, Hortobagy GN, Hash EM, et al. Leukocyte interferon-induced tumour regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Ann Intern Med 93: 399–406, 1980.

    PubMed  CAS  Google Scholar 

  204. Blomgren H, Cantell K, Johansson B, Lagergren C, Ringborg U, Strander H. Interferon therapy in Hodgkin’s disease. A case report. Acta Med Scand 199: 527–532, 1976.

    Article  PubMed  CAS  Google Scholar 

  205. Hil NO, Pardue A, Kahn A, Aleman D, Hill JM. High-dose human leukocyte interferon trials in leukemia and cancer. Med Pediatr Oncol 9: 82–89, 1981.

    Google Scholar 

  206. Einhorn N, Cantell K, Einhorn S, Strander H. Human leukocyte interferon therapy for advanced ovarian carcinoma. Cancer Clin Trials 5: 167–172, 1982.

    CAS  Google Scholar 

  207. Paucker G, Cantell K, Henle W. Quantitative studies on viral interference in suspended L-cells. III. Effect of interfering viruses and interferon on the growth rate of cells. Virology 17: 324–334, 1962.

    Article  PubMed  CAS  Google Scholar 

  208. Epstein LB. The interferon system. Tex Rep Biol Med 36: 42–56, 1978.

    Google Scholar 

  209. Saxena RK, Alder WH, Nordin AA. Modulation of natural cytotoxicity by alloantibodies. IV. A comparative study of the activation of mouse spleen cell cytotoxicity by anti-H2 antisera, interferon, and mitogens. Cell Immunol 63: 28–41, 1981.

    Article  PubMed  CAS  Google Scholar 

  210. Brunda MT, Herberman RB, Holden HT. Interferon-independent activation of murine natural killer cell activity. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980, pp. 525–536.

    Google Scholar 

  211. Brunda MJ, Herberman RB, Holden HT. Antibody-induced augmentation of murine natural killer cell activity. Int J Cancer 27: 205–212, 1981.

    Article  PubMed  CAS  Google Scholar 

  212. Goldfarb RH, Herberman RB. Natural killer cell reactivity: Regulatory interactions among phorbol ester, interferon, cholera toxin and retinoic acid. J Immunol 126: 2129–2135, 1981.

    Google Scholar 

  213. Blalock JE. Inhibition of interferon production by RA (vitamin A acid). Tex Rep Biol Med 35: 69–73, 1977.

    PubMed  CAS  Google Scholar 

  214. Kuribayashi K, Gillis S, Kern DE, Henney CS. Murine NK cell cultures: Effects of interleukin 2 and interferon on cell growth and cytotoxic reactivity. J Immunol 126: 2321–2327, 1981.

    PubMed  CAS  Google Scholar 

  215. Domzing W, Stadler BM. The relation between human natural killer cells and interleukin 2. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 409–415.

    Google Scholar 

  216. Roder JC, Argov S, Klein NM, Peterson C, Kiessling R, Anderson R, Anderson K, and Hansson M. Target-effector interaction in the natural killer cell system. V. Energy requirement, membrane integrity, and the possible involvement of lysosomal enzymes. Immunology 40: 107–116, 1980.

    PubMed  CAS  Google Scholar 

  217. Hochman PS, Cudkowicz G. Suppression of natural cytotoxicity by spleen cells of hydrocortisone-treated mice. J Immunol 123: 968–971, 1979.

    PubMed  CAS  Google Scholar 

  218. Cudowicz G, Hochman PS. Do natural killer cells engage in regulated reactions against self to ensure homeostasis? Immunol Rev 44: 13–41, 1979.

    Article  Google Scholar 

  219. Lotzova E, Gutterman JU. Effect of glucan on NK cells: Further comparison between NK cell and bone marrow effector cell activities. J Immunol 123: 607–611, 1979.

    Google Scholar 

  220. Brunda MJ, Herberman RB, Holden HT. Inhibition of murine natural killer cell activity by prostaglandins. J Immunol 124: 2682–2687, 1980.

    PubMed  CAS  Google Scholar 

  221. Droller JJ, Schneider MU, Perlmann P. A possible role of prostaglandins in the inhibition of natural and antibody-dependent cell-mediated cytotoxicity against tumour cells. Cell Immunol 39: 165–177, 1978.

    Article  PubMed  CAS  Google Scholar 

  222. Roder JC, Klein M. Target-effector interaction in the natural killer cell system. IV. Modulation by cyclic nucleotides. J Immunol 123: 2785–2790, 1979.

    PubMed  CAS  Google Scholar 

  223. Yanagihara RH, Alder WH. Inhibition of mouse natural killer activity by cyclosporin A. Immunology 45: 325–332, 1982.

    PubMed  CAS  Google Scholar 

  224. Introna M, Allavena P, Spreafico F, Mantovani A: Inhibition of human natural killer activity by cyclosporin A. Transplantation 31: 113–316, 1981.

    Article  PubMed  CAS  Google Scholar 

  225. Santoni A, Riccardi C, Sorci V, Herberman RB. Effects of adriamycin on the activity of mouse natural killer cells. J Immunol 124: 2329–2335, 1980.

    PubMed  CAS  Google Scholar 

  226. Sharp GWG, Hynie S. Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229: 226–229, 1971.

    Article  Google Scholar 

  227. Fuse A, Sato T, Kuwata T. Inhibitory effect of cholera toxin on human natural cell-mediated cytotoxicity and its augmentation by interferon. Br J Cancer 27: 29–36, 1981.

    CAS  Google Scholar 

  228. Sulica A, Cherman M, Galaliuc C, Maciulea M, Herberman RB. Negative regulation of human NK activity by monomeric IgG. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 621–629.

    Google Scholar 

  229. Merrill JE, Ullberg M, Jondal M. Influence of IgG and IgM receptor triggering on human natural killer cell cytotoxicity measured on the level of the single effector cell. Eur J Immunol 11: 536–541, 1981.

    Article  PubMed  CAS  Google Scholar 

  230. Hochman PS, Cudkowicz G, Dausset J. Decline of natural killer cell activity in sublethally irradiated mice. J Natl Cancer Inst 61: 265–268, 1978.

    PubMed  CAS  Google Scholar 

  231. Santoni A, Riccardi C, Barlozzari T, Herberman RB. Suppression of activity of mouse natural killer (NK) cells by activated macrophages from mice treated with Pyran copolymer. Int J Cancer 26: 837–843, 1980.

    Article  PubMed  CAS  Google Scholar 

  232. Uchida A, Hoshino T. Clinical studies on cell-mediated immunity in patients with malignant disease. II. Suppressor cells in patients with cancer. Cancer Immunol Immunother 9: 153–158, 1980.

    Google Scholar 

  233. Zembala M, Mytar O, Popiela T, Asherson GL. Depressed in vitro peripheral blood lymphocyte response to mitogens in cancer patients: The role of suppressor cells. Int J Cancer 19: 605–613, 1977.

    Article  PubMed  CAS  Google Scholar 

  234. Vose BM, Moore M. Suppressor cell activity of lymphocytes infiltrating human lung and breast tumours. Int J Cancer 24: 579–585, 1979.

    Article  PubMed  CAS  Google Scholar 

  235. Allavena PM, Introna C, Mangioni C, Mantovani A. Inhibition of natural killer activity by tumour- associated lymphoid cells from ascitic ovarian carcinomas. J Natl Cancer Inst 67: 319–325, 1981.

    PubMed  CAS  Google Scholar 

  236. Uchida A, Micksche M. Suppressor cells for natural killer activity in carcinomatous pleural effusions of cancer patients. Cancer Immunol Immunother 11: 255–263, 1981.

    Google Scholar 

  237. Bordignon C, Villa F, Vecchi A, Giavazzi R, Introna M, Avallone R, Mantovani A. Natural cytotoxic activity in human lungs. Clin Exp Immunol 47: 437–444, 1982.

    PubMed  CAS  Google Scholar 

  238. Becker S, Klein E. Decreased “natural killer”-NK effect in tumour bearing mice and its relation to the immunity against oncornavirus determined cell surface antigens. Eur J Immunol 6: 892–898, 1976.

    Article  Google Scholar 

  239. Stutman O, Dien P, Wisun RE, Lattime EC. Natural cytotoxic cells against solid tumours in mice: Blocking of cytotoxicity by D-mannose. Proc Natl Acad Sci 77: 2895–2898, 1980.

    Article  PubMed  CAS  Google Scholar 

  240. Forbes JT, Greco FA, Oldham RK. Natural cell-mediated cytotoxicity in human tumour patients. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980, pp. 1031–1045.

    Google Scholar 

  241. Pross HF, Baines MG. Studies of human natural killer cells. I. In vivo parameters affecting normal cytotoxic function. Int J Cancer 18: 593, 1976.

    Google Scholar 

  242. Platsoucas CD, Gupta S, Good RA, Fernandes G. T and non-T-cell-mediated NK and ADCC. Augmentation of T-cell-mediated NK and ADCC by interferon treatment in vitro. Fed Proc 39: 932, 1980.

    Google Scholar 

  243. Hawrylowicz CM, Rees RC, Hancock BW, Potter CW. Depressed spontaneous natural killing and interferon augmentation in patients with malignant lymphoma. Eur J Cancer 18: 1081–1088, 1982.

    Article  CAS  Google Scholar 

  244. Zeigler HW, Kay NE, Zarling JM. Deficiency of natural killer cell activity in patients with chronic lymphatic leukemia. Int J Cancer 27: 321–327, 1981.

    Article  Google Scholar 

  245. Kadish AS, Doyle AT, Steinhauer EH, Ghossein NA. Natural cytotoxicity and interferon production in human cancer: Deficient natural killer activity and normal interferon production in patients with advanced disease. J Immunol 127: 1817–1822, 1981 ).

    Google Scholar 

  246. Moore K, Moore M. Systemic and in situ NK activity in tumour-bearing rats. Br J Cancer 39: 636–647, 1979.

    Article  PubMed  CAS  Google Scholar 

  247. Moore M, Vose BM: Natural cytotoxic effectors in human tumours and tumour draining nodes. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 1127–1132.

    Google Scholar 

  248. Totterman TH, Hayny P, Saksela P, Timonen T, Eklund B. Cytological and functional analysis of inflammatory infiltrates in human malignant tumours II. Functional investigation of the infiltrating inflammatory cells. Eur J Immunol 8: 872-875, 1978.

    Google Scholar 

  249. Vose BM, Vanky F, Argov S, Klein E. Natural cytotoxicity in man: Activity of lymph node and tumour infiltrating lymphocytes. Eur J Immunol 7: 353–357, 1977.

    Google Scholar 

  250. Niitsuma M, Golub SH, Edelstein R, Holmes EC. Lymphoid cells infiltrating human pulmonary tumors: Effect of intralesional BCG injections. J Natl Cancer Inst 67: 997–1003, 1981.

    PubMed  CAS  Google Scholar 

  251. Introna M, Allavena P, Acero R, Colombo N, Molina P, Mantovani A. Natural killer activity in human ovarian tumours. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 1119–1126.

    Google Scholar 

  252. Mantovani A, Allavena P, Sessa C, Bolis G, Mangioni C. Natural killer activity of lymphoid cells isolated from human ascitic ovarian tumours. Int J Cancer 25: 573–582, 1980.

    Article  PubMed  CAS  Google Scholar 

  253. Eremin O. NK cell activity in the blood, tumour-draining lymph nodes and primary tumours of women with mammary carcinoma. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980, pp. 1011–1029.

    Google Scholar 

  254. Moore M, Vose BM. Extravascular natural cytotoxicity in man: Anti-K562 activity of lymph node and tumour-infiltrating lymphocytes. Int J Cancer 27: 265–272, 1981.

    Google Scholar 

  255. Golub SH, Niitsuma M, Kawate N, Cochran AJ, Holmes EC. NK activity of tumour infiltrating and lymph node lymphocytes in human pulmonary tumours. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 1113–1118.

    Google Scholar 

  256. Vose BM, Moore M. Natural cytotoxic effectors in human tumours and tumour draining nodes. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 1127–1132.

    Google Scholar 

  257. Holmes EC, Ramming KP, Bein ME, Coulson WF, Callery CD. Intralesional BCG immunotherapy of pulmonary tumours. J Thor Cardiovasc Surg 77: 362–368, 1979.

    CAS  Google Scholar 

  258. Petranyi G, Kiessling R, Klein G. Genetic control of natural killer lymphocytes in the mouse. Immuno-genetics 2: 53–651, 1975.

    Google Scholar 

  259. Haller O, Hanson M, Kiessling R, Wigzell H. Generation of natural killer cells: An autonomous function of the bone marrow. J Exp Med 145: 1411–1416, 1977.

    Article  PubMed  CAS  Google Scholar 

  260. Harmon RC, Clark EA, O’Toole C, Wicker LS. Resistance of H-2 heterozygous mice to prenatal tumours. Hybride resistance and natural cytotoxicity to EL-4 are controlled by the H-2D-Hh-I region. Immunogenetics 4: 601–607, 1977.

    Article  Google Scholar 

  261. Shellam GR. Cross-virus-induced lymphoma in the rat. V. Natural cytotoxic cells are non-T cells. Int J Cancer 19: 225–235, 1977.

    Article  PubMed  CAS  Google Scholar 

  262. Harmon RC, Clark EA, Reddy AL, Hildermann WH, Mullen YS. Immunity to MCA-induced rat sarcomas: Analysis of in vivo and in vitro results. Int J Cancer 20: 748–758, 1977.

    Article  PubMed  CAS  Google Scholar 

  263. Warner NL, Woodruff MFA, Burton RC. Inhibition of the growth of lymphoid tumours in syngeneic athymic (nude) mice. Int J Cancer 20: 146–155, 1977.

    Article  PubMed  CAS  Google Scholar 

  264. Ojo E. Positive correlation between the levels of natural killer cells and in vivo resistance to syngeneic tumour transplants as influenced by various routes of administration of Corynebacterium parvum bacteria. Cell Immunol 45: 182–187, 1979.

    Article  PubMed  CAS  Google Scholar 

  265. Henney CS, Tracey DE, Wolfe SA. BCG-induced natural killer cells: Immunotherapeutic implications. Isr J Med Sci 14: 75–88, 1978.

    PubMed  CAS  Google Scholar 

  266. Riccardi C, Santoni A, Barlozzuri T, Puccetti P, Herberman RB. In vivo natural reactivity of mice against tumour cells. Int J Cancer 15: 475–486, 1980.

    Google Scholar 

  267. Karre KK, Kiesling R, Klein G, Roder J. Low natural in vivo resistance to syngeneic leukemias in natural killer-deficient mice. Nature 284: 624, 1980.

    Article  PubMed  CAS  Google Scholar 

  268. Pollack SB, Hallenbeck LA. In vivo reduction of NK activity with anti-NKl serum: Direct evaluation of NK cells in tumour clearance. Int J Cancer 15: 203–207, 1982.

    Google Scholar 

  269. Menard S, Colnaghi MI, Porta GD. Natural anti-tumour serum reactivity in BALB/c mice. I. Characterization and interference with tumour growth. Int J Cancer 19: 267–274, 1977.

    Article  PubMed  CAS  Google Scholar 

  270. Chow DA, Wolosin LB, Greenberg AH. Murine natural anti-tumour antibodies. II. The contribution of natural antibodies to tumour surveillance. Int J Cancer 27: 459–469, 1981.

    Article  PubMed  CAS  Google Scholar 

  271. Carlson GA, Melnychuk D, Meeker MJ. H-2 associated resistance to leukemia transplantation: Natural killing in vivo. Int J Cancer 25: 111–122, 1980.

    Article  PubMed  CAS  Google Scholar 

  272. Walker JR, Rees RC, Teale DM, Potter CW. Properties of a herpes virus transformed hamster cell line. I. Growth and culture characteristics of sublines of high and low metastatic potential. Eur J Cancer Clin Oncol 18: 1017–1026, 1982.

    Article  PubMed  CAS  Google Scholar 

  273. Teale DM, Rees RC, Clark A, Walker JR, Potter CW. Reduced susceptibility to natural killer cell lysis of hamster tumours exhibiting high levels of spontaneous metastasis. Cancer Lett 19: 221–229, 1983.

    Article  PubMed  CAS  Google Scholar 

  274. Teale DM, Rees RC, Clark A, Potter CW. Detection and characterization of natural killer cells in Syrian golden hamsters. Eur J Cancer Clin Oncol 19: 537–545, 1983.

    Article  PubMed  CAS  Google Scholar 

  275. Reichman GI, Kluchareva TE, Kashkina LM, Matveera VA, Vendrov EL, Zemtsova VI. Correlation between the metastasizing activity of in vitro spontaneously transformed hamster cells and their natural resistance-depressing activity. Int J Cancer 30: 349–353, 1982.

    Article  Google Scholar 

  276. Sordat B, Merenda C, Carrel S. Invasive growth and dissemination of human solid tumours and malignant cell lines grafted subcutaneously to newborn nude mice. In Nomura T, Ohsawa N, Tamaoki N, Fujiware K (eds.), Proceeding of the Second International Workshop on Nude Mice. Tokyo: University of Tokyo Press, 1977, pp. 313–326.

    Google Scholar 

  277. Reid LM, Holland J, Jones C, Wolf B, Sato G. Some of the variables affecting the success of transplantation of human tumours into the athymic nude mice. In Houchens DP, Ovejera AA (eds.), Proceeding of the Symposium on the Use of Athymic (nude) Mice in Cancer Research. New York: Gustav Fischer Verlag, 1978, pp. 107–121.

    Google Scholar 

  278. Hanna A, Fidler IJ. Role of natural killer cells in the destruction of circulating tumour emboli. J Natl Cancer Inst 65: 801–809, 1980.

    PubMed  CAS  Google Scholar 

  279. Hanna N, Fidler IJ. Expression of metastatic potential of allogenic and xenogeneic neoplasms in young nude mice. Cancer Res 41: 438–444, 1981.

    PubMed  CAS  Google Scholar 

  280. Talmage JE, Meyers KM, Prieur DJ, Starkey JR. Role of NK cells in tumour growth and metastasis in beige mice. Nature 284: 622–624, 1980.

    Article  Google Scholar 

  281. Kasai M, Yoneda T, Habu S, Maryama Y, Okumura K, Tokunaga T. In vivo effect of anti-asialo GM1 antibody on natural killer activity. Nature 291: 334–335, 1980.

    Google Scholar 

  282. Habu S, Fukui H, Shimamura K, Kasai M, Nagai Y, Okumura K, Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumour growth in nude mice. J Immunol 127: 34–38, 1981.

    Google Scholar 

  283. Gorelik E, Witrout RH, Okumura K, Habu S, Herberman RB. Role of NK cells in the control of metastatic spread and growth of tumour cells in mice. Int J Cancer 309: 107–112, 1982.

    Article  Google Scholar 

  284. Smith KA, Lachman LB, Oppenheim JJ, Favata MF. The functional relationship of the interleukins. J Exp Med 151: 1551–1556, 1980.

    Article  PubMed  CAS  Google Scholar 

  285. Gillis S, Watson J. Biochemical and biological characterisation of lymphocyte regulatory molecules. J Exp Med 152: 1709–1719, 1980.

    Article  PubMed  CAS  Google Scholar 

  286. Watson J, Gillis S, Marbrook J, Mochizuki D, Smith KA. Biochemical and biological characterization of lymphocyte regulatory molecules. J Exp Med 150: 849–861, 1979.

    Article  PubMed  CAS  Google Scholar 

  287. Gillis S, Smith K, Watson J. Biochemical characterization of lymphocyte regulatory molecules. II. Purification of a class of rate and human lymphokines. J Immunol 124: 1954–1962, 1980.

    PubMed  CAS  Google Scholar 

  288. Farrar WL, Elgert KD. Suppressor cell activity in tumour-bearing mice. II. Inhibition of DNA synthesis and DNA polymerases by TBH splenic suppressor cells. J Immunol 120: 1354–1361, 1978.

    PubMed  CAS  Google Scholar 

  289. Shaw J, Monticone V, Mills G, Paetkan V. Effects of constimulator on immune responses in vitro. J Immunol 120: 1974–1980, 1978.

    PubMed  CAS  Google Scholar 

  290. Sekaly RP, Macdonald HR, Zaech P, Nabholz M. Cell cycle regulation of cloned cytolytic T cells by T cell growth factor: Analysis by flow microfluorometry. J Immunol 129: 1407–1415, 1982.

    PubMed  CAS  Google Scholar 

  291. Farrar WL, Mizel SB, Farrar JJ. Participation of lymphocyte activating factor (interleukin 1) in the induction of cytotoxic T cell response. J Immunol 124: 1371–1377, 1980.

    PubMed  CAS  Google Scholar 

  292. Larsson EL, Iscove NN, Coutinho A. Two distinct factors are required for induction of T-cell growth. Nature 283: 664–666, 1980.

    Article  PubMed  CAS  Google Scholar 

  293. Wagner HM, Rollinghoff M, Pfizenmaier K, Hardt C, Johnscher G. T-T cell interactions during in vitro cytotoxic T lymphocyte (CTL) response. II. Helper factor from activated Lyt 1 + T cells is rate limiting (i) in T cell response to non immunogenic alloantigen, (ii) in thymocyte responses to allogeneic stimulator cells, and (iii) recruits alio-or H-2-restricted CTL precursors from the Lyt 123+ T subset. J Immunol 124: 1058–1067, 1980.

    PubMed  CAS  Google Scholar 

  294. Dennert G. Cytolytic and proliferative activity of a permanent T killer cell line. Nature 227: 476–477, 1979.

    Article  Google Scholar 

  295. Baker PC, Gillis S, Smith KA. Monoclonal cytotoxic T-cell lines. J Exp Med 149: 273–278, 1979.

    Article  PubMed  CAS  Google Scholar 

  296. Pawelec G, Rehbein A, Muller C, Sonneborn HH, Wernet P. Human T lymphocytes grown in T-cell growth factor: Functional attributes in MLC, CML, PLT and allogeneic suppression. Immunology 42: 529–540, 1981.

    PubMed  CAS  Google Scholar 

  297. Alvarez JM, Silva A, De Laudazuri MO. Human T cell growth factor. I. Optimal conditions for its production. J Immunol 123: 977–983, 1979.

    PubMed  CAS  Google Scholar 

  298. Bonnard GD, Yasaka K, Maca RD. Continued growth of functional human T lymphocytes: production of human T-cell growth factor. Cell Immunol 51: 390–401, 1980.

    Article  PubMed  CAS  Google Scholar 

  299. Gillis S, Scheid M, Watson J. Biochemical and biological characterization of lymphocyte regulatory molecules. III. The isolation and phenotypic characterization of interleukin-2 producing T cell lymphomas. J Immunol 125: 2570–2578, 1980.

    PubMed  CAS  Google Scholar 

  300. Rabin H, Hopkins RF, Francis W, Neubauer RH, Brown RL, Kawakami TG. Spontaneous release of a factor with properties of T cell growth factor from a continuous line of primate tumour T cells. J Immunol 127: 1852–1856, 1981.

    PubMed  CAS  Google Scholar 

  301. Meuer SC, Hussey RE, Penta AC, Fitzgerald KA, Stadler BM, Schlossman SF, Reinherz EL. Cellular origin of interleukin 2 (IL2) in man: Evidence for stimulus-restricted IL2 production by T4+ and T8+ T lymphocytes. J Immunol 129: 1076–1079, 1982.

    PubMed  CAS  Google Scholar 

  302. Kedar E, Ikejiri B, Sredni B, Bonavida B, Herberman RB. Propagation of mouse cytotoxic clones wTith characteristics of natural killer (NK) cells. Cell Immunol 69: 305–329, 1982.

    Article  PubMed  CAS  Google Scholar 

  303. Dennert G. Cloned lines of natural killer cells. Nature 287: 47–49, 1980.

    Article  PubMed  CAS  Google Scholar 

  304. Dennert G. Yogeeswaran G, Yamagata S. Cloned cell lines with natural killer activity. Specificity, function, and cell surface markers. J Exp Med 153: 545–556, 1981.

    Article  PubMed  CAS  Google Scholar 

  305. Hercend T, Meuer S, Reinerz E, Schlossman S, Ritz J. Generation of a cloned NK cell line derived from the “null cell” fraction of human peripheral blood. J Immunol 129: 1299–1305, 1982.

    PubMed  CAS  Google Scholar 

  306. Krensky AM, Ault KA, Reiss CS, Strominger JL, Burakoff SJ. Generation of long-term human cytolytic cell clones with persistent natural killer activity. J Immunol 129: 1748–1751, 1982.

    PubMed  CAS  Google Scholar 

  307. Timonen T, Ortaldo JR, Stadler BM, Bonnard GD, Sharrow SO, Herberman RB. Cultures of purified human natural killer cells: Growth in the presence of interleukin 2. Cell Immunol 72: 178–185, 1982.

    Article  PubMed  CAS  Google Scholar 

  308. Mule JJ, Hellstrom I, Hellstrom KE. Cell surface phenotypes of radiolabeled immune long-lived lymphocytes that selectively localize in syngeneic tumours. Am J Pathol 107: 142–149, 1982.

    PubMed  CAS  Google Scholar 

  309. Hersey P, Bindon C, Edwards A, Murray E, Phillips G, McCarthy WH. Induction of cytotoxic activity in human lymphocytes against autologous and allogeneic melanoma cells in vitro by culture with interleukin 2. Int J Cancer 28: 695–703, 1981.

    Article  PubMed  CAS  Google Scholar 

  310. Vanky F, Gorsky T, Gorsky Y, Masucci M, Klein E. Lysis of tumour biopsy cells by autologous T lymphocytes activated in mixed cultures and propogated with T cell growth factor. J Exp Med 155: 83–95, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston/Dordrecht/Lancaster

About this chapter

Cite this chapter

Rees, R.C., Ali, S.A. (1985). Antitumour Lymphocyte Responses. In: Hancock, B.W., Milford Ward, A. (eds) Immunological Aspects of Cancer. Developments in Oncology, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2557-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2557-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9607-2

  • Online ISBN: 978-1-4613-2557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics