What physical situation arises when either a single grain or an array of sediment particles is released in a fluid of contrasted density? This question is sedimentologically interesting for at least two reasons. It relates to the ability of the wind, rivers, tidal currents and turbidity currents to transport sediment in turbulent suspension, and to the attitudes assumed by particles on deposition. Some valuable insights will come from the following experiments.


Reynolds Number Drag Coefficient Separation Bubble Turbidity Current Superficial Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. R. L. 1984a. Experiments on the settling, overturning and entrainment of bivalve shells and related models. Sedimentology 31, 227–50.CrossRefGoogle Scholar
  2. Allen, J. R. L. 1984b. Experiments on the terminal fall of the valves of bivalve molluscs loaded with sand trapped from a dispersion. Sed. Geol. 39, 197–209.CrossRefGoogle Scholar
  3. Clift, R., J. R. Grace and M. E. Weber 1978. Bubbles, drop and particles. New York: Academic Press.Google Scholar
  4. Dullien, F. A. L. 1979. Porous media. Fluid transport and pore structure. New York: Academic Press.Google Scholar
  5. Futterer, E. 1978. Untersuchungen über die Sink- und Transport-geschwingkeit biogener Hartteile. Abh. N. Jb. Geol. Palont. 155, 318–57.Google Scholar
  6. Hallermeier, R. J. 1981. Terminal settling velocity of common¬ly occurring sand grains. Sedimentology 28, 859–65.CrossRefGoogle Scholar
  7. Hjelmfelt, A. T. and K. L. F. Mockros 1967. Stokes flow behaviour of an accelerating sphere. J. Engng. Mech. Div. Am. Soc. Civ. Engrs 93, 87–102.Google Scholar
  8. Jayaweera, K. O. L. F. and B. J. Mason 1965. The behaviour of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech. 22, 709–20.CrossRefGoogle Scholar
  9. Krumbein, W. C. and G. D. Monk 1942. Permeability as a function of the size parameters of unconsolidated sand. Petrolm Technol. 5, 1–11.Google Scholar
  10. Leva, M. 1959. Fluidisation. New York: McGraw-Hill.Google Scholar
  11. Maude, A. D. and R. L. Whitmore 1958. A generalized theory of sedimentation. Br. J. Appl. Phys. 9, 477–82.CrossRefGoogle Scholar
  12. Richardson, J. F. and W. N. Zaki 1954. Sedimentation and fluidisation. Trans. Inst. Chem. Engrs 32, 35–53.Google Scholar
  13. Scheidegger, K. F. and L. A. Krissek 1982. Dispersal and deposition of eolian and fluvial sediments off Peru and Chile. Bull. Geol. Soc. Am. 93, 150–62.CrossRefGoogle Scholar
  14. Scott, G. D. 1960. Packing of spheres. Nature 188, 908–9.CrossRefGoogle Scholar
  15. Stringham, G. E., D. B. Simons and H. P. Guy 1969. The behaviour of large particles falling in quiescent liquids. Prof. Pap. US Geol. Surv., no. 562-C.Google Scholar
  16. Taneda, S. 1956. Studies on wake vortices. (III) Experimental investigation of the wake behind a sphere at low Reynolds numbers. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 4, 99–105.Google Scholar
  17. Taneda, S. 1978. Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J. Fluid Mech. 85, 187–92.CrossRefGoogle Scholar
  18. Von Engelhardt, W. and H. Pitter 1951. Über die Zusammenhänge zwischen Porosität, Permeabilität und Korngrösse bei Sanden und Sandsteinen. Heidelb. Beitr. Min. Petrog. 2, 477–91CrossRefGoogle Scholar
  19. Willmarth, W. W., N. E. Hawk and R. L. Harvey 1964. Steady and unsteady motions and wakes of freely falling discs. Phys. Fluids 7, 197–208.CrossRefGoogle Scholar

Copyright information

© J.R.L Allen 1985

Authors and Affiliations

  • J. R. L. Allen
    • 1
  1. 1.Department of GeologyUniversity of ReadingUK

Personalised recommendations