Photosynthetic Parameters in Ramalina Duriaei, in Vivo, Studied by Photoacoustics

  • R. Ronen
  • O. Canaani
  • J. Garty
  • D. Cahen
  • S. Malkin
  • M. Galun

Abstract

Sulfur dioxide is a we11-documented atmospheric pollutant and many studies have dealt with the effect of SO2 on lichens. Laboratory studies have demonstrated the effect of SO2 on respiration, photosynthesis and chlorophyll in lichens (Pearson and Skye, 1965; Rao and Le Blanc, 1966; Hill, 1971, 1974; Showman, 1972; Baddeley et al., 1973; Richardson and Puckett, 1973; Turk et al., 1974; Hällgren and Huss, 1975; Eversman, 1978; Beekley and Hoffman, 1981; Malhotra and Khan, 1983). Effects of SO2 on these physiological parameters have also been observed in lichens fumigated in nature (Eversman, 1978; Moser et al., 1980) and transplanted to polluted areas (Brodo, 1961; LeBlanc and Rao, 1966; Schonbeck, 1969; Kauppi, 1976; Ferry and Coppins, 1979). These parameters have been measured in lichens by different methods such as: Infra Red Gas Analysis (IRGA) (Lange, 1965; Turk et al., 1974; Larson and Kershaw, 1975); 14C incorporation (Hill, 1971; Puckett et al., 1973; Hallgren and Huss, 1975; Malhotra and Khan, 1983); oxygen electrode (Baddeley et al., 1971); differential respirometry (Showman, 1972) and microfluorometry (Kauppi, 1980).

Keywords

Dioxide Chlorophyll DMSO Respiration Dimethyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baddeley, M. S., Ferry, B. W., and Finegan, E. J., 1971, A new method of measuring lichen respiration: response of selected species to temperature, pH and sulfur dioxide, The Lichenologist, 5: 18–25.CrossRefGoogle Scholar
  2. Baddeley, M. S., Ferry, B. W., and Finegan, E. J., 1973, Sulphur dioxide and respiration in lichens, in: “Air Pollution and Lichens”, B. W. Ferry, M. S. Baddeley, and D. L. Hawksworth, eds, pp. 299–313, Athlone Press, London.Google Scholar
  3. Beekley, P. K., and Hoffman, G. R., 1981, Effects of sulphur dioxide fumigation on photosynthesis, respiration and chlorophyll content of selected lichens, The Bryologist, 84: 379–390.CrossRefGoogle Scholar
  4. Brodo, I. M., 1961, Transplant experiments with corticolous lichens using a new technique, Ecology, 42 : 838–841.CrossRefGoogle Scholar
  5. Bults, G., Horwitz, B. A., Malkin, S., and Cahen, D., 1982, Photoacoustic measurements of photosynthetic activities in whole leaves. Photochemistry and gas exchange, Biochimica et Biophysica Acta, 679 : 452–465.CrossRefGoogle Scholar
  6. Cahen, D., Bults, G., Garty, H., and Malkin, S., 1980, Photoacoustics in life sciences, Journal of Biochemical and Biophysical Methods, 3: 293–310.PubMedCrossRefGoogle Scholar
  7. Canaani, O., Cahen, D., and Malkin, S., 1982, Use of photoacoustic methods in probing development of the photosynthetic apparatus in greening leaves, in: “Cell function and Differentiation. Part B,” G. Akoyunoglou, ed., pp. 299–308, Alan R. Liss Inc., New York.Google Scholar
  8. Canaani, O., Ronen, R., Garty, J., Cahen, D., Malkin, S., and Galun, M., 1984, Photoacoustic study of the green alga Trebouxia in the lichen Ramalina duriaei in vivo, Photosynthesis Research, 5: 297–306.CrossRefGoogle Scholar
  9. Carpentier, R., Larue, B., and LeBlanc, R. M., 1984, Photoacoustic spectroscopy of Anacystis nidulans. III. Detection of photosynthetic activities, Archives of Biochemistry and Biophysics, 228 : 534–543.Google Scholar
  10. Eversman, S., 1978, Effects of low level SO2 on Usnea hirta and Parmelia chlorochroa. The Bryologist, 81: 368–377.CrossRefGoogle Scholar
  11. Ferry, B. W., and Coppins, B. J., 1979, Lichen transplant experiments and air pollution studies, The Lichenologist, 11 : 63–747.CrossRefGoogle Scholar
  12. Fuchs, C., and Garty, J., 1983, The content of some elements in the lichen Ramalia duriaei (De Not.) Jatta in air quality biomonitoring stations, Environment and Experimental Botany, 23: 29–43.CrossRefGoogle Scholar
  13. Galun M. Garty, J., and Ronen, R., 1984, Lichens as bioindicators of air pollution, Webbia, 38 : 371–383.Google Scholar
  14. Garty, J., and Fuchs, C., 1982, Heavy metals in the lichen Ramalina duriaei transplanted to biomonitoring stations. Water, Air and Soil Pollution, 17 : 175–183.Google Scholar
  15. Hällgren, J. E., and Huss, K., 1975, Effects of SO2 on photosynthesis and nitrogen fixation, Physiologia Plantarum, 34 : 171–176.CrossRefGoogle Scholar
  16. Hill, D. J., 1971, Experimental study of the effect of sulphite on lichens with reference to atmospheric pollution, New Phytologist, 70: 831–836.CrossRefGoogle Scholar
  17. Hill, D. J., 1974, Some effects of sulphite on photosynthesis in lichens, New Phytologist, 73: 1193–1205.CrossRefGoogle Scholar
  18. Kauppi, M., 1976, Fruticose lichen transplant technique for air pollution experiments, Flora, 165: 407–414.Google Scholar
  19. Kauppi, M., 1980, Fluorescence microscopy and microfluorometry for the examination of pollution damage in lichens, Annales Botanici Fennici, 17: 163–173.Google Scholar
  20. Lange, O. L., 1965, Der CO2 Gaswechsel von Flechten nach Erwarmung im feuchten Zustand, Berichte der Deutschen Botanischen Gesellschaft, 78: 441–454.Google Scholar
  21. Larson, D. W., and Kershaw, K. A., 1975, Measurement of CO2 exchange in lichens: a new method, Canadian Journal of Botany, 53: 1535–1541.CrossRefGoogle Scholar
  22. Lasser-Ross, N., Malkin, S., and Cahen, D., 1980, Photoacoustic detection of photosynthetic activities in isolated broken chloroplasts, Biochimica et Biophysica Acta, 593: 330–341.PubMedCrossRefGoogle Scholar
  23. LeBlanc, F., and Rao, D. N., 1966, Reaction de quelques lichens et mousses epiphytiques a’1anhydride sulfureux dans la region de Sudbury, Ontario, The Bryologist, 69 : 338–346.Google Scholar
  24. Malhotra, S. S., and Khan, A. A., 1983, Sensitivity to SO2 of various metabolic processes in an epiphytic lichen Evernia mesomorpha, Biochemie und Physiologie der Pflanzen, 178 : 121–130.Google Scholar
  25. Malkin, S., and Cahen, D., 1979, Photoacoustic spectroscopy and radiant energy conversion: theory of the effect with special emphasis on photosynthesis, Photochemistry and Photobiology, 29: 803–813.CrossRefGoogle Scholar
  26. Moser, T. J., Nash III, T. H., and Clark, W. D., 1980, Effects of a long-term field sulfur dioxide fumigation on Arctic caribou forage lichens, Canadian Journal of Botany, 58: 2235–2240.CrossRefGoogle Scholar
  27. O’Hara, E. P., Tom, R. D., and Moore, T. A., 1983, Determination of the in vivo absorption and photosynthetic properties of the lichen Acarospora schleicheri using photoacoustic spectroscopy, Photochemistry and Photobiology, 38: 709–715.CrossRefGoogle Scholar
  28. Pearson, L., and Skye, E., 1965, Air pollution affects pattern of photosynthesis in Parmelia sulcata, a corticolous lichen, Science, 148 : 1600–1602.PubMedCrossRefGoogle Scholar
  29. Poulet, P., Cahen, D., and Malkin, S., 1983, Photoacoustic detection of photosynthetic oxygen evolution from leaves: quantitative analysis by phase and amplitude measurements, Biochimica et Biophysica Acta, 724: 433–446.CrossRefGoogle Scholar
  30. Puckett, K. J., Nieboer, E., Flora, W. P., and Richardson, D. H. S., 1973, Sulphur dioxide: its effect on photosynthetic 14C fixation in lichens and suggested mechanisms of phototoxicity, New Phytologist, 72: 141–154.CrossRefGoogle Scholar
  31. Rao, D. N., and LeBlanc, F., 1966, Effects of sulfur dioxide on the lichen alga, with special reference to chlorophyll, The Bryologist, 69: 69–75.Google Scholar
  32. Richardson, D. H. S., and Puckett, K. J., 1973, Sulphur dioxide and photosynthesis in lichens, in: “Air Pollution and Lichens,” B. W. Ferry, M. S. Baddeley, and D. L. Hawksworth, eds, pp. 283–298, Athlone Press, London.Google Scholar
  33. Ronen, R., Garty, J., and Galun, M., 1983, Air pollution monitored by lichens, in ! “Developments in Ecology and Environmental Quality,” Proc. Int. Meeting — The Israel Ecological Society., Balaban Int. Science Ser. Rehovoth/Philadelphia, 2 : 167–176.Google Scholar
  34. Ronen, R., and Galun, M., 1984, Pigment extraction from lichens with dimethyl-sulfoxide (DMSO) and estimation of chlorophyll degradation, Environmental and Experimental Botany, 24: 239–245.CrossRefGoogle Scholar
  35. Schünbeck, H., 1969, A method for determining the biological effects of air pollution by transplanted lichens, Staub-Reinhalt-Luft, 29: 17–21.Google Scholar
  36. Showman, R. E., 1972, Residual effects of sulphur dioxide on the net photosynthetic and respiratory rates of lichen thalli and cultured lichen symbionts, The Bryologist, 75: 335–341.CrossRefGoogle Scholar
  37. Törk, R., Wirth, V., and Lange, O. L., 1974, CO2-Gaswechsel Untersuchungen zur SO2- Resistenz von Flechten, Oecologia, 15 : 33–64.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. Ronen
    • 1
  • O. Canaani
    • 2
  • J. Garty
    • 1
  • D. Cahen
    • 3
  • S. Malkin
    • 2
  • M. Galun
    • 1
  1. 1.Department of BotanyTel Aviv UniversityTel AvivIsrael
  2. 2.Department of BiochemistryWeizmann Institute of ScienceRehovothIsrael
  3. 3.Department of Structural ChemistryWeizmann Institute of ScienceRehovothIsrael

Personalised recommendations