Advertisement

The Influence of Ion Implantation of Reactive Elements on the Growth of Cr2O3 Scales on Ni-20% Cr at High Temperature

  • F. H. Stott
  • J. S. Punni
  • G. C. Wood
  • G. Dearnaley
Part of the NATO ASI Series book series (NSSB, volume 129)

Abstract

The additions of reactive elements, such as yttrium or cerium, to nickel-chromium alloys have considerable beneficial effects on the development, growth and mechanical stability of Cr2O3 scales in oxygen at high temperature. Several mechanisms have been proposed to account for these effects, involving processes within the alloy, at the alloy/scale interface or within the bulk scale, but none is universally accepted. In order to investigate the phenomenon further, a study of the influence of ion-implanted reactive elements on the subsequent oxidation behaviour of Ni-20%Cr has been carried out. Implanted cerium or yttrium are particularly effective in increasing the rate of establishment of the healing protective Cr2O3 scale and in decreasing its rate of growth. The latter effect can be associated with a change in diffusion processes in the oxide. The scale on the unimplanted surfaces grows outwards following diffusion of Cr3+ ions from the alloy/scale to the scale/gas interface. Here, the contribution of oxygen diffusion is relatively small. However, the scale on the implanted surfaces grows inwards following diffusion of oxygen from the scale/gas to the scale/alloy interface. On exposure of the implanted surfaces to the environment, the implanted reactive element species are oxidized to form small (5 to 50 nm) particles at or near the metal surface. As the Cr2O3 scale develops, these are incorporated into it as discrete particles, with only a very small solubility in the oxide. However, there is a general suppression of outward diffusion of Cr3+ ions through the scale, enabling inward transport of oxygen to predominate. Possible reasons for these effects are discussed and related to the distribution of the reactive elements in the scale.

Keywords

Reactive Element Internal Oxidation Oxidation Metal Outward Diffusion Cr203 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Pfeil, U. K. Patent No. 459848 (1937).Google Scholar
  2. 2.
    J. Stringer, B. A. Wilcox, R. I. Jaffee, Oxidation Metals 5:11 (1972).CrossRefGoogle Scholar
  3. 3.
    J. M. Francis, W. H. Whitlow, Corros. Science 5:701 (1965).CrossRefGoogle Scholar
  4. 4.
    J. Stringer, I. G. Wright, Oxidation Metals 5:59 (1972).CrossRefGoogle Scholar
  5. 5.
    C. S. Giggins, F. S. Pettit, Metall. Trans. 2:1071 (1971).CrossRefGoogle Scholar
  6. 6.
    G. C. Wood, J. Boustead, Corros. Science 8:719 (1968).CrossRefGoogle Scholar
  7. 7.
    I. G. Wright, B. A. Wilcox, R. I. Jaffee, Oxidation Metals 9:275 (1975).CrossRefGoogle Scholar
  8. 8.
    B. Lustman, Trans. Met. Soc., AIME 188:995 (1950).Google Scholar
  9. 9.
    E. J. Felton, J. Electrochem. Soc. 108:490 (1961).CrossRefGoogle Scholar
  10. 10.
    C. S. Wukusick, J. F. Collins, Mater. Res. Stand. 4:637 (1964).Google Scholar
  11. 11.
    J. E. Antill, K. A. Peakall, J. Iron Steel Inst. 205, 1136 (1967).Google Scholar
  12. 12.
    G. C. Wood, Werkst, u. Korros. 22:491 (1971).CrossRefGoogle Scholar
  13. 13.
    D. P. Whittle, J. Stringer, Phil. Trans. Roy. Soc. A. 309 (1979).Google Scholar
  14. 14.
    J. M. Francis, J. A. Jutson, Corros. Science 8:445 (1968).CrossRefGoogle Scholar
  15. 15.
    H. Pfeiffer, Werkst, u. Korros. 8:574 (1957).CrossRefGoogle Scholar
  16. 16.
    J. Stringer, Oxidation Metals 5:49 (1972).CrossRefGoogle Scholar
  17. 17.
    J. K. Tien, F. S. Pettit, Metall. Trans. 3:1587 (1972).CrossRefGoogle Scholar
  18. 18.
    I. A. Kvernes, Oxidation Metals 6:45 (1973).CrossRefGoogle Scholar
  19. 19.
    C. S. Giggins, B. H. Kear, F. S. Pettit, J. K. Tien, Metall. Trans. 5:1685 (1974).CrossRefGoogle Scholar
  20. 20.
    G. C. Wood, J. A. Richardson, M. G. Hobby, J. Boustead, Corros. Science 9:659 (1969).CrossRefGoogle Scholar
  21. 21.
    F. A. Golightly, F. H. Stott, G. C. Wood, Oxidation Metals 10:163 (1976).CrossRefGoogle Scholar
  22. 22.
    G. C. Wood, F. H. Stott, Development and Growth of Protective α-A12O3 Scales on Alloys, in: “High-Temperature Corrosion”, ed. R. A. Rapp, NACE 6:227 (1983).Google Scholar
  23. 23.
    D. Mortimer, M. L. Post, Corros. Science 8:499 (1968).CrossRefGoogle Scholar
  24. 24.
    D. Caplan, G. I. Sproule, Oxidation Metals 9:459 (1975).CrossRefGoogle Scholar
  25. 25.
    G. R. Wallwork, A. Z. Hed, Oxidation Metals 3:229 (1971).CrossRefGoogle Scholar
  26. 26.
    P. Skeldon, J. M. Calvert, D. G. Lees, Phil. Trans. Roy. Soc. London A296:557 (1980).ADSGoogle Scholar
  27. 27.
    F. A. Kruger, Defects and Transport in SiO2, A12O3 and Cr2O3, in: “High-Temperature Corrosion”, ed. R. A. Rapp, NACE-6:89 (1983).Google Scholar
  28. 28.
    J. S. Punni, Ph.D. Thesis, University of Manchester (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • F. H. Stott
    • 1
  • J. S. Punni
    • 1
  • G. C. Wood
    • 1
  • G. Dearnaley
    • 2
  1. 1.Corrosion and Protection CentreUniversity of Manchester Institute of Science and TechnologyManchesterUK
  2. 2.A.E.R.E HarwellOxfordshireUK

Personalised recommendations