Tuning the Metal-Insulator Transition in N-Type Silicon with a Magnetic Field

  • Theodore G. Castner
  • William N. Shafarman
Part of the Institute for Amorphous Studies Series book series (IASS)


Since the classic calculation of Yafet, Keyes, and Adams1 demonstrating the shrinkage of shallow donor wave functions in large static magnetic fields, it has been widely recognized that a magnetic field could be used to tune a metallic sample through the Metal-Insulator (MI) transition. Several experimental groups2–5 have successfully tuned n-type InSb through the MI transition with modest magnetic fields. For InSb it is easy to bring the magnetic length λ=(hc/eH)1/2 to a value much less than the donor Bohr radius (aD *~600Å) with reasonable fields since λ=81Å (10/H(T.))1/2. One thereby readily achieves the strong field limit (λ<<aD*) for InSb. For n-type Si and Ge the donor Bohr radii are very much smaller (aD*<20Å for Si and aD*<47Å for Ge) and one remains in the weak field limit (intermediate regime for Ge) for the largest static laboratory fields (H~30T.) available. As a result there have been no reported successful efforts in tuning the MI transition in Si with a magnetic field to compare with the remarkably successful tuning of the critical density Nc for Si :P by Paalanen et al.6 utilizing uniaxial stress. Below some new experimental evidence is presented, for both barely insulating and barely metallic samples, which can be interpreted in terms of tuning of Nc by a large static magnetic field.


Field Dependence Localization Length Magnetic Phase Diagram Metallic Sample Magnetic Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yafet, R.W. Keyes, and E.N. Adams, J. Phys. Chem. Solids 1:137 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    R. W. Keyes and R. J. SladekJ. Phys. Chem. Solids1: 143 (1956).ADSCrossRefGoogle Scholar
  3. 3.
    S. Ishida and E. Otsuka, J. Phys. Soc. Japan 42:542 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    J. L. Robert, A. Raymond, R. L. Aulombard, and C. Bousquet, Phil. Mag. B. 42: 1003 (1980).CrossRefGoogle Scholar
  5. 5.
    R. Mansfield, M. Abdul-Gader and P. Rozooni, Proc. of Int. Conf. on Heavy Doping and the Metal-Insulator Transition in Semiconductors, Santa Cruz, 1984, ed. by P. Landsberg, Solid State Electronics (in press).Google Scholar
  6. 6.
    M. Paalanen, T. F. Rosenbaum, G. A. Thomas, and R. N. Bhatt, Phys. Rev. Lett. 51: 1896 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    T. F. Rosenbaum, R. G. Milligan, G. A. Thomas, P. A. Lee, T. V. Ramakrishnan, and R. N. Bhatt, Phys. Rev. Lett. 47: 1758 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    B. Shapiro, Phil. Mag B50:241 (1984)Google Scholar
  9. 9.
    B.I. Shklovskii, Zh. Eksp. Tear. Fiz.61:2033 (1971) {Sov. Phys. JETP 34:1084 (1972)}.Google Scholar
  10. 10.
    C. Castellani, C. DiCastro, P. A. Lee, and M. Ma, Phys. Rev. B30: 527 (1984).ADSGoogle Scholar
  11. 11.
    J.A. Chroboczek, Phil. Mag B42:933 (1980)Google Scholar
  12. 12.
    B.I. Shklovskii, Fix. Tekh. Poluprovodn, 6:1197 (1972)Google Scholar
  13. 13.
    Y. Imry, “Anderson Localization”, ed. by Y. Nagaoka and `H. Fukuyama, Springer-Verlag, Berlin (1982) p. 140.Google Scholar
  14. 14.
    D. New, N.K. Lee, H.S. Tan, and T.G. Castner, Phys. Rev. Lett 48:1208 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    D. New, T. G. Castner, M.J. Naughton and J. S. Brooks, Conf. Proc. The Application of High Magnetic Fields in Semiconductor Physics, Grenoble 1982, Lecture Notes in Physics177, Springer-Verlag, Berlin (1983) p. 475.Google Scholar
  16. 16.
    W.N. Shafarman and T.G. Castner, “Proc. of the 17th Int. Conf. on the Physics of Semiconductors” ed. by Chadi and Harrison, Springer-Verlag (in press)Google Scholar
  17. 17.
    N.F. Mott, J. Non-Cryst. Solids 1:1 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    F.R. Allen and C.J. Adkins Phil. Mag. 26: 1027 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    H. F. Hess, K. DeConde, T. F. Rosenbaum, and G. A. Thomas, Phys. Rev. B25: 5578 (1982).ADSGoogle Scholar
  20. 20.
    R. M. Hill, phys. stat. sol. (a)35: K29 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    P.F. Newman and D.F. Holcomb, Phys. Rev B28:628 (1983)ADSGoogle Scholar
  22. 22.
    G. A. Thomas, Y. Ootuka, S. Kobayashi, and W. Sasaki, Phys. Rev. B24, 4886 (1981).ADSGoogle Scholar
  23. 23.
    H. Tokumoto, R. Mansfield, and M.J. Lea, Sol. St. Commun., 35:961 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    B.I. Shklovskii, Pis’ma Sh. Eks. Fiz. 36:43 (1982) {JETP Lett. 36:51 (1982)}.ADSGoogle Scholar
  25. 25.
    B.I. Shklovskii, and A. L. Efros, “Electronic Properties of Doped Semiconductors”, Sol. St. Sciences 45, Springer-Berlin (1984) p. 211.Google Scholar
  26. 26.
    A. Miller and E. Abrahams, Phys. Rev. 120:745 (1960)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Y. Toyozawa, J. Phys. Soc. Japan 17:986 (1962)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kawabata, Sol. St. Commun. 34:431 (1980); J. Phys. Soc. Japan49:628 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    P.A. Lee and T.V. Ramakrishnan, Phys. Rev. B26:4009 (1982)ADSGoogle Scholar
  30. 30.
    N. Mikoshiba, Phys. Rev. 127:1962 (1962)ADSMATHCrossRefGoogle Scholar
  31. 31.
    C. Castellani and C. DiCastro, Proc. of the VII Sityer Conf., June 1984, Lecture Notes, Springer-Verlag (in press)Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Theodore G. Castner
    • 1
  • William N. Shafarman
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations