Skip to main content

Part of the book series: Studies in the Natural Sciences ((SNS,volume 21))

Abstract

Is it possible to put consciousness into a home computer? The only way one may have any chance to accomplish this is by reducing the dimensionality of the class of problems that the brain to be designed must solve. This can indeed be done within the context of a certain abstract theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J.A. and W.W. Tso (1974). Decision-making in bacteria: Chemotactic response of E. coli to conflicting stimuli. Science 184, 1292–1294.

    Google Scholar 

  • Albus, J . (1979). A model of the brain for robot control. Byte 4(9), 130 – 148.

    Google Scholar 

  • Dewdney, A.K . (1979). J. Recreational Math. 12, 16.

    Google Scholar 

  • Garey, M. and D. Johnson (1980). Computers and Intractability.New York-San Francisco: Freeman.

    Google Scholar 

  • Harth, E . (1983). A neural sketch-pad. These Proceedings.

    Google Scholar 

  • Hoffman, W.C . (1980). Subjective geometry and geometric psychology. Math. Modelling 1, 349–367.

    Google Scholar 

  • Kosslyn, S.M. and S.P. Shwartz (1977). A simulation of visual imagery. Cognit. Sci. 1, 265–295.

    Google Scholar 

  • Pellionisz, A. and R. Llinás (1982). Tensor theory of brain function: The cerebellum as a space-time metric. Springer Lect. Notes in Biomath. 45, 394 –417.

    Google Scholar 

  • Rosen, R . (1981) On Anticipatory Systems. Monograph in press.

    Google Scholar 

  • Rössler, O.E . (1974). Adequate locomotion strategies for an abstract organism in an abstract environment: A relational approach to brain function. Springer Lect. Notes in Biomath. 4, 342–369.

    Google Scholar 

  • Rössler, O.E . (1976). Prescriptive relational biology and bacterial chemotaxis. J. Theor. Biol. 62, 141–157.

    Article  PubMed  Google Scholar 

  • Rössler, O.E . (1981). An artificial cognitive map system. Biosystems 13, 203–209.

    Google Scholar 

  • Shaw, R . (1981). Strange attractors, chaotic behavior and information flow. Z. Naturforsch. 36 A, 80.

    Google Scholar 

  • Zeeman, E.C. (1965). Topology of the brain. In: Mathematics and Computer Science in Biology and Medicine (Medical Research Council Publication), pp. 277 – 292. London: Her Majesty’s Stationary Office.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Rössler, O.E. (1985). Design for a One-Dimensional Brain. In: Mints, S.L., Perlmutter, A. (eds) Information Processing in Biological Systems. Studies in the Natural Sciences, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2515-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2515-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9520-4

  • Online ISBN: 978-1-4613-2515-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics