Effect of Long Range Potential Fluctuations on the Transport Properties of Disordered Semiconductors

  • B. Pistoulet
  • P. Girard
  • F. M. Roche
Part of the Institute for Amorphous Studies Series book series (IASS)

Abstract

The purpose of the present paper is to examine the effects of long range potential fluctuations (PF) on the transport properties by band carriers in disordered semiconductors. Such fluctuations may likely be produced , during the growth of the solid from the liquid or the vapor phase, by slow variations of temperature, pressure, gradients, occurring in times of the order of seconds or more, as well as by changes in local composition and flow of the liquid or (and) the gas phase. These variations are very difficult to avoid, even in carefully controlled processes, and they inevitably produce changes in the microscopic composition of the grown material. At usual growing speeds, these individual changes may extend over distances of tens or hundreds of atomic spacings in the grown solid. For instance microstructures of about 500 A diameter, resulting from columnar growth, have been observed23. In semiconductors, whatever their state (crystalline, glassy, amorphous) and their nature (inorganic, organic), such changes result in long range fluctuations of : the impurity density, the degree of compensation, the hydrogen (or other gas) content, the degree of stoechiometry in compounds, the respective proportions of several phases in polyphased materials. These fluctuations markedly differ from shorter range statistical fluctuations, on which they superpose. According to their nature, they produce covariant or contravariant fluctuations of the band edges.

Keywords

Recombination GaAs Gallium Deconvolution Haas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Pistoulet, J.L. Robert, J.M. Dusseau, L. Ensuque, J. Non-Cryst. Sol. 29, 29, (1978)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Knights, R.A. Lujan, Appl. Phys. Lett. 35(3), 244, (1979)ADSCrossRefGoogle Scholar
  3. J.C. Knights, J. Non-Cryst. Sol. 35 & 36, 159, (1980)ADSCrossRefGoogle Scholar
  4. 3.
    R.C. Ross, A.G. Johncock, A.R. Chan, J. Non-Cryst. Sol. 66,81 (1984)ADSCrossRefGoogle Scholar
  5. 4.
    W. Shockley, J. Bardeen, Phys. Rev. 77, 407, (1950)MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    L. Keldysh, G.P. Proshko, Soviet. Phys. Solid State, 5 (12)2481, (1964)Google Scholar
  7. 6.
    J. Tauc, Mat. Res. Bulletin 5, 721, (1970)CrossRefGoogle Scholar
  8. 7.
    H. Fritzsche, J. of Non-Cryst. Sol. 6, 49, (1971)ADSCrossRefGoogle Scholar
  9. 8.
    B.I. Shklovskii, A.L. Efros, Soviet Phys. JETP, 33, 468, (1971)ADSGoogle Scholar
  10. 9.
    - B. Pistoulet, J.L. Robert, J.M. Dusseau, F. Roche, P. Girard, J. Phys. (Paris), C7 suppi. au n° 12, 38, C7-207 (1977)CrossRefGoogle Scholar
  11. 10a.
    B. Pistoulet, P. Girard, G. Hamamdjian,J. Appl. Phys. 56 (8), 2268 (1984)ADSCrossRefGoogle Scholar
  12. 10b.
    B. Pistoulet, P. Girard, G. Hamamdjian, J. Appl. Phys. 56 (8), 2275 (1984)ADSCrossRefGoogle Scholar
  13. 11.
    B. Pistoulet, F.M. Roche, S. Abdalla, Phys. Rev. B, 30 n°10, 5987 (1984)ADSCrossRefGoogle Scholar
  14. 12.
    B. Pistoulet, J.L. Robert, D. Barjon, A. Raymond, A. Joullie, Sol. State Comm. 16, 289 (1975)ADSCrossRefGoogle Scholar
  15. 13.
    A. Raymond, J.L. Robert, B. Pistoulet, Gallium Arsenide and Related Compounds (Edinburgh) 1976, Edited by C. HILSUM, Inst. Phys. Conf. Ser. n° 33a, 105, 1977Google Scholar
  16. 14.
    J.L. Robert, B. Pistoulet, A. Raymond, R.L. Aulombard, C. Bernard, C. Bousquet, Revue de Phys. Appliquee, 13, 246, 1978Google Scholar
  17. 15.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Cryst. Materials, Clarendon Press, Oxford, 1971, Oxford Univ. Press, 2nd Edition, 1979Google Scholar
  18. 16.
    J.C. Austin, N.F. Mott, Advances in Physics, 18, 41 (1969)Google Scholar
  19. 17.
    J.G. Lepetre, J.M. Dusseau, J.L. Robert, B. Pistoulet, J. Phys. C : Solid State Phys. 6, 3295, (1973)Google Scholar
  20. J.G. Lepetre, J.M. Dusseau, J.L. Robert, B. Pistoulet, J. Phys. C : Solid State Phys. 6, 1794, (1973)Google Scholar
  21. 18.
    T. Soegandi, F.M. Roche, B. Pistoulet, to be publishedGoogle Scholar
  22. 19.
    M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)ADSCrossRefGoogle Scholar
  23. 20.
    M. Abkowitz, P.G. Le Comber, W.E. Spear, Communications on Physics, 1, 175 (1976)Google Scholar
  24. 21.
    S. Abdalla, B. Pistoulet, to be publishedGoogle Scholar
  25. 22.
    T.D. Moustakas, K. Weiser, Phys. Rev. B, 12 (6), 2448 (1975)ADSCrossRefGoogle Scholar
  26. 23.
    W.E. Spear, R.J. Loveland, Al Shabaty, J. Non-Cryst.Solids 15, 410 (1974)ADSCrossRefGoogle Scholar
  27. 24.
    G. Pfister, Phys. Rev. Letters, 36, 271 (1976)ADSCrossRefGoogle Scholar
  28. 25.
    J.M. Dusseau, J.L. Robert, Recent Developments in Condensed Matter Physics, Edited by J. Devreese, Plenum Press, N.Y. Vol. 2, 305 (1981)Google Scholar
  29. 26.
    J.M. Marshall, A.E. Owen, Phil. Mag. 31, 1341 (1975)Google Scholar
  30. 27.
    H.A. Vander Plas, R.H. Bube, J. Non-Cryst. Solids 24, 377 (1977)ADSCrossRefGoogle Scholar
  31. 28.
    W. Beyer, R. Fischer, H. Overhof, Proc. 7th Int. Conf. Amorphous and Liquid Semicond. Ed. by W.E. Spear, Univ. Edinburgh, p. 328 (1977);Google Scholar
  32. H. Overhof, W. Beyer, Phil. Mag.43, 433 (1981)CrossRefGoogle Scholar
  33. 29.
    D.A. Anderson, T.D. Moustakas, W. Paul, Proc. 7th Int. Conf. Amorphous and Liquid Semicond. Ed. by W.E. Spear, Univ. Edinburgh, p.334 (1977)Google Scholar
  34. 30.
    A. Madan, P.G. Lecomber, W.E. Spear, J. Non-Cryst.Solids,20, 239 (1976)ADSCrossRefGoogle Scholar
  35. 31.
    S.M. Sze, Physics of Semicond. Devices, 2nd Edition, John Wiley and sons, N.Y. 1981Google Scholar
  36. 32.
    C.G. Garett, W.H. Brattain, Phys. Rev. 99, 376 (1955)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press , New York 1985

Authors and Affiliations

  • B. Pistoulet
    • 1
  • P. Girard
    • 1
  • F. M. Roche
    • 1
  1. 1.Laboratoire d’Automatique et de Microélectronique de Montpellier, associé au C.N.R.SUniversité des Sciences et Techniques du LanguedocMontpellier-cedexFrance

Personalised recommendations