Local Fields in Liquids

  • Branka M. Ladanyi
Part of the NATO ASI series book series (volume 127)


In this article the present state of theory and experiments designed to determine local field effects on light scattering and induced birefringence in liquids of optically anisotropic molecules is reviewed. Attention is focused on the effective polarizabilities, which measure the deviation of local field contributions to the observed intensities from the isotropic Lorenz-Lorentz forms. Results of measurements of effective polarizabilities in isotropic and depolarized light scattering (DLS) from pure liquids and dilute solutions are described. Molecular theory, which explains the observed behavior of effective polarizabilities in terms of the anisotropy of the short range fluid structure and dipole-induced dipole intermolecular interactions, is presented. It is shown how the molecular theory relates the effective polarizabilities observed in DLS, Kerr effect, and Cotton-Mouton effect. The dielectric cavity theory for effective polarizabilities is derived from the molecular theory. The results of this theory along with those of other approximations are compared to the computer simulation results. Theoretical basis and accuracy of two modern experimental methods for measuring effective anisotropic polarizabilities are discussed. Some problems in need of further investigation are briefly described.


Local Field Wigner Function Kerr Effect Molecular Theory Effective Polarizability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alms, G. R., Gierke, T. D., and Flygare, W.H., 1974, Depolarized Rayleigh scattering in liquids: The density and temperature dependence of the orientational pair correlations in liquids composed of anisometric molecules, J. Chem. Phys., 61: 4083CrossRefGoogle Scholar
  2. Applequist, J., Carl, J. R., and Fung, K. K., 1974, An atom dipole model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities, J. Am. Chem. Soc., 94: 2952CrossRefGoogle Scholar
  3. Applequist, J., 1974, An atom dipole interaction model for molecular optical properties, Acc. Chem. Res., 10: 79CrossRefGoogle Scholar
  4. Bancewicz, T., 1983, Rayleigh light scattering by liquids composed of interacting anisotropic molecules. Spherical tensor approach within the second order approximation and the DID model, Molec. Phys., 50: 173CrossRefGoogle Scholar
  5. Battaglia, M. R., Cox, T. I., and Madden, P. A., 1979, The orientational correlation parameter for liquid CS6, C6H6 and C6F6, Molec. Phys., 37: 1413CrossRefGoogle Scholar
  6. Bauer, D. R., Brauman, J. I., and Pecora, R., 1975, Depolarized Rayleigh scattering and orientational relaxation of molecules in solution. IV. Mixtures of hexafluorobenzene and benzene with mesitylene, J. Chem. Phys., 63: 53CrossRefGoogle Scholar
  7. Bertucci, S. J., Burnham, A. K., Alms, G. R. and Flygare, W. H., 1977, Light scattering studies of orientational pair correlations m liquids composed of anisometric molecules, J. Chem. Phys., 66: 605CrossRefGoogle Scholar
  8. Boots, H. M. J., Bedeaux, D., and Mazur, P., 1975, On the theory of multiple scattering I, Physica, A76: 397Google Scholar
  9. Bottcher, C. J. F., and Bordewijk, P., 1978, “Theory of Electric Polarization”, Vol. II, Elsevier, AmsterdamGoogle Scholar
  10. Bottcher, C. J. F., 1973, “Theory of Electric Polarization”, Vol. I, Elsevier, AmsterdamGoogle Scholar
  11. Brot, C., 1980a, Anisometric molecules in dense fluids. I. The depolarized light scattering intensity by anisometric molecules in solution, Molec. Phys., 39: 683CrossRefGoogle Scholar
  12. Brot, C., 1980b, Anisometric molecules in dense fluids. II Kerr constant of non-polar anisometric molecules in solutions, Molec. Phys., 41: 1195CrossRefGoogle Scholar
  13. Brot, C, 1981, Anisometric molecules in dense fluids. III Permitivité non poiaire et refractivite des solutions diluées et des liquides purs à molecules anisometriques, Molec. Phys., 43: 1021CrossRefGoogle Scholar
  14. Brot, C, 1982, Anisometric molecules m dense fluids. VI. The static permitivity of solutions of ellipsoidal polar molecules: extension of the Onsager model, Molec. Phys., 45: 543CrossRefGoogle Scholar
  15. Brown, N. M. D., McGuire, J. F., and Swmton, F. L., 1978, Depolarized Rayleigh scattering from binary mixtures composed of optically anisotropic molecules, Faraday Discuss. Chem. Soc., 66: 244CrossRefGoogle Scholar
  16. Buckingham A. D., 1967, Permanent and induced molecular moments and long-range intermolecular interactions, Adv. Chem. Phys. 12:107, and references thereinCrossRefGoogle Scholar
  17. Buckingham, A. D., Stiles, P. J., and Ritchie, G. L. D., 1971, Theory of the solvent effect on the molar refraction, polarization, Kerr and Cotton-Mouton constants of non-polar solutes, Trans. Faraday Soc., 67: 577Google Scholar
  18. Buckingham, A. D., and Raab, R. E., 1957, A molecular theory of the electro-optical Kerr effect in liquids, J. Chem. Soc., 2341 (1957)Google Scholar
  19. Buckingham, A. D., and Pople, J. A., 1956, A theory of magnetic double refraction, Proc. Phys. Soc., B 69: 1133Google Scholar
  20. Burnham, A. K., Alms, G. R., and Flygare, W. H., 1975, The local electric field. I. The effect on isotropic and anisotropic Rayleigh scattering, J. Chem. Phys., 62: 3289Google Scholar
  21. Burnham, A. K., 1977, “Light Scattering and Electric Birefringence Studies of Gases and Liquids and Magnetic Studies of Aromaticity”, Ph. D. Thesis, University of Illinois, unpublishedGoogle Scholar
  22. Cox, T. I., Battaglia, M. R., and Madden, P. A., 1979, Properties of liquid CS2 from the allowed light scattering spectra, Molec. Phys., 38: 1539Google Scholar
  23. De Santis, A, and Sampoli, M., 1984, Raman spectra of fluid N2. Temperature and density behavior of the second moment, Molec. Phys., 51: 97CrossRefGoogle Scholar
  24. Einstein, A., 1910, Theory of’ the opalescence of homogeneous liquids and liquid mixtures in the neighborhood of the critical state, Ann. Physik, 33: 1275Google Scholar
  25. Felderhof, B. U., 1974, On the propagation and scattering of light in fluids, Physica, A76: 486CrossRefGoogle Scholar
  26. Fixmari, M., 1955, Molecular theory of light scattering, J. Chem. Phys., 23: 2074Google Scholar
  27. Frenkel, D., and McTague, J. P., 1980, Molecular dynamics studies of orientational and collision induced light scattering in molecular fluids, J. Chem. Phys., 72: 2801Google Scholar
  28. Gierke, T. D., 1976, Dynamic orientational pair correlations in symmetric tops and static orientational pair correlations m anisometric molecules, J. Chem. Phys., 65: 3873Google Scholar
  29. Gierke, T. D., and Aims, G. R., 1982, Analysis of the depolarized Rayleigh light scattering spectrum of liquids composed of anisometric molecules: Nitrobenzene, J. Chem. Phys., 76: 4809Google Scholar
  30. Gierke, T. D., and Burnham, A. K., 1980, A comparison of effective polarizabilities from electro-optical experiments using microscopic and macrocsopic theories of the local field, J. Chem. Phys., 73: 4822Google Scholar
  31. Gierke, T. D., and Flygare, W. H., 1974, Depolarized Rayleigh scattering m liquids. Molecular reorientation and pair correlations in nematic liquid crystal: MBBA, J. Chem. Phys., 61: 2231Google Scholar
  32. Hunt, K. C. L., 1985, this volumeGoogle Scholar
  33. Hynne, F., 1977, Dielectric screening and susceptibility fluctuations in optical scattering, Molec. Phys., 34: 681Google Scholar
  34. Keyes, T., Kivelson, D., and McTague, J.P., 1971, Theory of k-independent depolarized Rayleigh wing scattering in liquids composed of anisotropic molecules, J. Chem. Phys., 55: 4096Google Scholar
  35. Keyes, T., and Ladanyi, B. M., 1984, The internal field problem in depolarized light scattering, Adv. Chem. Phys., in pressGoogle Scholar
  36. Keyes, T., and Ladanyi, B. M., 1977a, The role of local fields and interparticle pair correlations in light scattering by dense fluids. II Depolarized spectrum for nonspherical molecules, Molec. Phys., 33: 1099Google Scholar
  37. Keyes, T., and Ladanyi, B. M., 1977b, The role of local fields and interparticle pair correlations in light scattering by dense fluids. IV. Removal of the point polarizability approximation, Molec. Phys., 33: 1271Google Scholar
  38. Keyes, T., ana Ladanyi, B. M., 1977c, Can dielectric theories and measurements be used to predict depolarized light scattering intensities?, Molec. Phys., 34:765. The expression in Eq. (23) of this paper should be multiplied by -1/2. In the present notation, d=a/b and r is in units of bGoogle Scholar
  39. Keyes, T., ana Ladanyi, B. M., 1979a, The relation of the Kerr effect to depolarized Rayleigh scattering, Molec. Phys., 37: 1643MathSciNetCrossRefGoogle Scholar
  40. Keyes, T., and Ladanyi, B. M., 1979b, Light scattering from two component systems, an analysis of the ‘dilution experiment’, Molec. Phys., 38: 605Google Scholar
  41. Kielich, S., 1967, Role of intermolecular interaction in anisotropic ligiat scattering by liquids, J. Chem. Phys., 46: 4090Google Scholar
  42. Ladanyi, B.M., 1983, Molecular dynamics study of Rayleigh light scattering from molecular fluids, J. Chem. Phys., 78: 2189Google Scholar
  43. Ladanyi, B.M., and Keyes, T., 1977a, The role of local fields and interparticle pair correlations in light scattering by dense fluids. I. Depolarized intensities due to orientational fluctuations, Molec. Phys., 33: 1063MathSciNetCrossRefGoogle Scholar
  44. Ladanyi, B. M., and Keyes, T., 1977b, The role of local fields and interparticle pair correlations in light scattering by dense fluids. III. Polarized scattering by nonspherical molecules, Molec. Phys., 33: 1247MathSciNetCrossRefGoogle Scholar
  45. Ladanyi, B. M., and Keyes, T., 1977c, Theory of the static Kerr effect in dense fluids, Molec. Phys., 34: 1643MathSciNetCrossRefGoogle Scholar
  46. Ladanyi. B. M., and Keyes, T., 1978, The intensity of light scattered by liquid CS2, J. Chem. Phys., 68: 3217Google Scholar
  47. Ladanyi, B. M., Keyes, T., Tildesley, D. J., and, Streett, W. B., 1980, Structure and equilibrium optical properties of xiquid CS, Molec. Phys., 39: 645CrossRefGoogle Scholar
  48. Ladanyi, B. M., and Levinger, N. E., 1984, Computer simulation of Raman scattering from molecular fluids, J. Chem. Phys., 81: 2620Google Scholar
  49. Lorentz, H. A., 1952, “Theory of Electrons”, Dover, New YorkGoogle Scholar
  50. Madden, P. A., 1979, unpublisned resultsGoogle Scholar
  51. Madden, P. A., Battaglia, M. R., Cox, T. I., Pierens, R. K., and Champion, J. Y., 1980, Tne orientational correlation parameter g2 of symmetrical benzene derivatives, Chem. Phys. Lett., 76: 604Google Scholar
  52. Malmberg, M. S., and Lippincott, E. R., 1969, Evidence of molecular interactions in Rayleigh light scattering, J. Colloid Interface Sci., 27: 591CrossRefGoogle Scholar
  53. Onsager, L., 1936, Electric moments of molecules in liquids, J. Am. Chem. Soc., 58: 1486Google Scholar
  54. Raman, C. V., and Krishnan, K.S., 1928, Theory of light scattering in liquids, Phil. Mag., 5: 498Google Scholar
  55. Rose, M. E., 1957, “Elementary Theory of Angular Momentum”, Wiley, New YorkMATHGoogle Scholar
  56. Schoen, P. E., Cheung, P. S. Y., Jackson, D. A., and Powles, J. G., 1975, The properties of liquid nitrogen. III. The light scattering spectrum, Molec. Phys., 29: 1197CrossRefGoogle Scholar
  57. Scholte, T. G., 1949, Theory of the dielectric constant of polar liquids, Physica, 15: 437CrossRefGoogle Scholar
  58. Steele, W. A., 1963, Statistical mechanics of nonspherical molecules, J. Chem. Phys., 39: 3197CrossRefGoogle Scholar
  59. Smoluchowski, M., 1908, Ann. Physik, 25: 205CrossRefGoogle Scholar
  60. Tildesley, D. J., and Madden, P. A., 1983, Time correlation functions for a model of liquid carbon disulfide, Molec. Phys., 48: 129CrossRefGoogle Scholar
  61. Tildesley, D. J., and Streett, W. B., 1976, Computer simulations of polyatomic molecules. I. Monte Carlo studies of hard diatomics, Proc. Roy. Soc. London, A 348: 485CrossRefGoogle Scholar
  62. Yvon, J., 1937, “Recherches sur la theorie cinétique des fluides. I. Fluctuations en densité. I I. La propagation et la diffusion de la lumière”, Hermann & Cie, ParisGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Branka M. Ladanyi
    • 1
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations