Vibrational Energy Exchange Between Gases and Solids

  • Giorgio Benedek
Part of the NATO ASI Series book series (volume 124)


The interest in the subject of gas-surface collisions and energy transfer between gases and solids has much increased during the last two decades in connection with aerospace research. Under rarified-gas conditions, where the mean free path of gas molecules is much larger than any characteristic surface length scale, the gas-surface interaction is no longer governed by boundary layer or bulk flow effects, but depends strictly on individual collisions between the gas molecules and the solid surface.1 More recently, the inelastic scattering of atoms from solid surfaces has become a powerful tool for surface phonon spectroscopy. A by-product of such spectroscopic studies is the direct measurement of the energy exchanges with individual modes of the vibrational spectrum under selected kinematic and temperature conditions.


Rayleigh Wave Accommodation Coefficient Coupling Force Surface Phonon Distorted Wave Born Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Logan, Theory of Gas-Surface Scattering and Accommodation, in “Solid State Surface Science”, M. Green ed., vol.3, Dekker, New York (1973). p. 1.Google Scholar
  2. 2.
    M. Knudsen, Ann. der Phys. 34: 593 (1911).ADSMATHCrossRefGoogle Scholar
  3. 3.
    F.O. Goodman and H.Y. Wachman in“Dynamic Aspects of Surface Physics”, F.O. Goodman ed., Compositori, Bologna (1974), p. 347 – 529.Google Scholar
  4. 4.
    F.O. Goodman, J. Phys. Chem. 84:1431 (1980); F.O. Goodman in “Rarified Gas Dynamics”, S.S. Fisher ed., Progr. Astron. Aeron. 74:3 (1981).CrossRefGoogle Scholar
  5. 5.
    L.B. Thomas in“Rarified Gas Dynamics”, C.L. Brundin, ed., Vol. 1, Academic Press, New York (1955) p. 155.Google Scholar
  6. 6.
    D.V. Roach and LB. Thomas, ibidem, p.163.Google Scholar
  7. 7.
    H.Y. Wachman, J. Chem. Phys., 45: 1532 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    J. Kouptsidis and D. Menzel, Ber. Bunsen Gesell. f. Physik Chemie74: 512 (1970).Google Scholar
  9. 9.
    F.O. Goodman and H.Y. Wachman, “Dynamics of Gas-Surface Scattering”, Academic Press, New York, (1976).Google Scholar
  10. 10.
    M. Sinvani, M.W. Cole and D.L. Goodstein, Phys.. Rev. Lett51: 188 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Manson, J. Chem. Phys. 56:3451 (1972); and J.R. Manson and J. Tompkins in “Rarified Gas Dynamics”, J.L. Potter ed., Progr. Astron. Aeron. 51:603 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    B. Baule, Ann. der Phys44: 145 (1914).ADSMATHCrossRefGoogle Scholar
  13. 13.
    F.O. Goodman and N. Garcia, Phys. Rev. B. 20: 813 (1979).ADSGoogle Scholar
  14. 14.
    F.O. Goodman, Surf. Sci92: 185 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    N. Garcia, V. Celli and J.R. Manson,J. Chem. Phys72: 3436 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    E.N. Economou, “Green’s Functions for Solid State Physicists”, Springer, Heidelberg (1979).Google Scholar
  17. 17.
    . F.O. Goodman in“Rarified Gas Dynamics”, J.H. De Leeuw ed., Vol.II, Academic Press, New York (1966) p. 366.Google Scholar
  18. 18.
    F. Fumi and M.P. Tosi, J. Phys. Chem. Solids25: 31 (1964).ADSCrossRefGoogle Scholar
  19. 19.
    V. Bortolani, F. Nizzoli and G. Santoro in “Lattice Dynamics”, M. Balkanski ed., Flammarion, Paris (1977) p. 302.Google Scholar
  20. 20.
    G. Brusdeylins, R.B. Doak and J.P. Toennies, Phys. Rev. Lett. 44:1417 (1980); 16:437 (1981); G. Brusdeylins, R.B. Doak and J.P. Toennies, Phys. RevB27: 3662 (1983).ADSCrossRefGoogle Scholar
  21. 21.
    G. Brusdeylins, R.B. Doak and J.P. Toennies, Phys. RevB27: 3662 (1983)ADSGoogle Scholar
  22. 22.
    R.B. Doak, U. Harten and J.P. Toennies, Phys. Rev. Lett51: 578 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    G. Benedek, J.P. Toennies and R.B. Doak, Phys. Rev. B28: 7276 (1983).ADSGoogle Scholar
  24. 24.
    G. Benedek, J.P. Toennies and R.B. Doak, Phys. Rev. B28: 7276 (1983).ADSGoogle Scholar
  25. 25.
    B. Feuerbacher and R.F. Willis, Phys. Rev. Lett47: 526 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    V. Bortolani, A. Franchini, F. Nizzoli, G. Santoro, G. Benedek and V. Celli, Surf. Sci128: 249 (1983).ADSCrossRefGoogle Scholar
  27. 27.
    V. Bortolani, A. Franchini, F. Nizzoli, G. Santoro, G. Benedek and V. Celli, Surf. Sci128: 249 (1983).ADSCrossRefGoogle Scholar
  28. 28.
    N. Cabrera, V. Celli and R. Manson, Phys. Rev. Lett22: 346 (1969).ADSCrossRefGoogle Scholar
  29. 29.
    N. Cabrera, V. Celli, F.O. Goodman and R. Manson, Surf. Sci19: 67 (1970).ADSCrossRefGoogle Scholar
  30. 30.
    R. Manson and V. Celli, Surf. Sci24: 495 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    A.C. Levi, Nuovo Cim. B 54:357 (1979), and references therein.ADSCrossRefGoogle Scholar
  32. 32.
    A.C. Levi and H. Suhl, Surf. Sci. 88: 221 (1979).ADSCrossRefGoogle Scholar
  33. 33.
    G. Armand and J.R. Manson, Surf. Sci88: 532 (1979).ADSCrossRefGoogle Scholar
  34. 34.
    H.D. Meyer, Surf. Sci.104:117 (1981), and references therein.Google Scholar
  35. 35.
    G. Benedek and G. Seriani, Jpn. j. Appl. Phys., Suppl. 2, Pf.2: 545 (1974): He/LiF, in DWBA with Lennar-Jones potentials.Google Scholar
  36. 36.
    G. Benedek and N. Garcia, Surf. Sci. 103:L143 (1981): He/LiF for a hard-corrugated surface with exact numerical treatment of static corrugation.CrossRefGoogle Scholar
  37. 37.
    D. Evans, V. Celli, G. Benedek,R.B. Doak and J.P. Toennies, Phys. Rev. Lett. 50:1854 (1983): He/LiF as ref.35 with effect of resonances due to bound states in the attractive well.ADSCrossRefGoogle Scholar
  38. 38.
    V. Bortolani, A. Franchini, F. Nizzoli and G. Santoro, Phys. Rev. Lett. 52:429 (1984): He/Ag with DWBA and Morse potential.ADSCrossRefGoogle Scholar
  39. 39.
    A.C. Levi, G. Benedek, L. Miglio, G. Platero, V.R. Velasco and F.G. Moliner, Surf. Sci. in press: He/NaF in eikonal approximation with Morse potential.Google Scholar
  40. 40.
    H. Schiff, “Quantum Mechanics” 3rd ed., McGraw-Hill, New York (1966).Google Scholar
  41. 41.
    L. van Hove, Phys. Rev95: 249 (1954).ADSMATHCrossRefGoogle Scholar
  42. 42.
    W. Brenig, Z. Physik B 36:81 (1979) and 36: 227 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    H. Böheim, W. Brenig and J. Stutzki, Z. Physik B48: 43 (1982).ADSCrossRefGoogle Scholar
  44. 44.
    R. Sedlmeir and W. Brenig, Z. Physik B36: 245 (1980).ADSCrossRefGoogle Scholar
  45. 45.
    J. Böheim and W. Brenig, Z. Phys. B41: 243 (1981).ADSCrossRefGoogle Scholar
  46. 46.
    G.P. Brivio, J. Phys. C: Solid State Physics, 16: L131 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    G.P. Brivio and T.B. Grimley, Surf. Sci131: 475 (1983).ADSCrossRefGoogle Scholar
  48. 48.
    P. Cantini, G.P. Felcher and R. Tatarek, Phys. Rev. Letters37: 606 (1976); Surf. Sci63: 104 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    P. Cantini and R. Tatarek, Phys. Rev. B23: 3030 (1981).ADSGoogle Scholar
  50. 50.
    D. Eichenauer and J.P. Toennies, in “Dynamics at Surfaces”, B. Pullmann and J. Jortner, eds. Reidel, Dordrecht (1984).Google Scholar
  51. 51.
    F.0. Goodman, Surf. Sci. 111: 279 (1981).ADSCrossRefGoogle Scholar
  52. 52.
    . G. Benedek in “Collective Excitations in Solids”, B. di Bartolo ed., Plenum Publishing Co., New York (1983) p. 523 – 558.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Giorgio Benedek
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàGruppo Nazionale di Struttura della Materia del C.N.RMilanoItaly

Personalised recommendations