Advertisement

Photomorphogenesis In Microorganisms

  • V. E. A. Russo
  • J. A. A. Chambers
  • F. Degli-Innocenti
  • Th. Sommer
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 89)

Abstract

Light can stimulate or inhibit many morphogenetic changes in several microorganisms: algae, fungi, slime molds and myxobacteria.

Keywords

Neurospora Crassa Slime Mold Sensory Transduction Albino Mutant Blue Light Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensasson, R. V., 1980, Molecular aspects of photoreceptor function: Carotenoids and rhodopsins, in: “Photoreceptor and Sensory Transduction in Aneural Organisms,” F. Lenci and G. Colombetti, eds., Plenum Press, New York - London, pp. 211–234.Google Scholar
  2. Bentrum, F.-W., 1963, Vergleichende Untersuchungen zur Polaritäts-induktion durch das Licht an der Equisetumspore und der Fucus-Zygote, Planta, 59: 472.CrossRefGoogle Scholar
  3. Bergman, K., Eslava, A. P., and Cerda-Olmedo, E., 1973, Mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 123: 1.PubMedCrossRefGoogle Scholar
  4. Brook, P. J., 1969, Stimulation of ascospore release in Venturia inaequalis by far red light, Nature, 222: 390.CrossRefGoogle Scholar
  5. Bünning, E., 1938a, Phototropismus und Carotenoide. II. Das Carotin der Reizaufnahmezone von Pilobolus, Phycomyces und Avena, Planta, 27: 148.CrossRefGoogle Scholar
  6. Bünning, E., 1938b, Phototropismus und Carotenoide. III. Weitere Untersuchungen an Pilzen and höheren Pflanzen, Planta, 27: 583.CrossRefGoogle Scholar
  7. Castle, E. S., 1935, Photic excitation and phototropism in single plant cells, Cold Spring Harbor Symp. Quart. Biol., 3: 224.Google Scholar
  8. Chang, M. T., Raper, K. B., and Poff, K. L., 1983, The effect of light on morphogenesis of Dictyostelium mucoroides, Exp. Cell Res., 143: 335.PubMedCrossRefGoogle Scholar
  9. Clauss, H., 1963, Über den EinfluB von Rot- und Blaulicht auf das Wachstum kernhaltiger Teile von Acetabularia mediterranea, Naturwis., 50: 719.CrossRefGoogle Scholar
  10. Clauss, H., 1970, Effect of red and blue light on morphogenesis and metabolism of Acetabularia mediterranea, in: “Biology of Acetabularia,” J. Bracket and S. Bonotto, eds., Academic Press, New York.Google Scholar
  11. Clauss, H., 1979, Auslösung der circadianen Photosynthese-Rhythmik bei Acetabularia durch Blaulicht, Protoplasma, 99: 341.CrossRefGoogle Scholar
  12. Daniel, J. W., and Rusch, H. P., 1962, Method for inducing sporulation of pure cultures of the myxomycete Physarum polycephalum, J. Bacteriol., 83: 234.PubMedGoogle Scholar
  13. Degli Innocenti, F., Chambers, J. A. A., and Russo, V. E. A., 1984, Conidia induce the formation of protoperithecia in Neurospora crassa: Further characterization of white collar mutants, J. Bacteriol., 159: in press.Google Scholar
  14. Degli Innocenti, F., Pohl, U., and Russo, V. E. A., 1983, Photoinduction of protoperithecia in Neurospora crassa by blue light, Photochem. Photobiol., 37: 49.CrossRefGoogle Scholar
  15. Degli Innocenti, F., and Russo, V. E. A., 1984a, Isolation of white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia, J. Bacteriol., 159: in press.Google Scholar
  16. Degli Innocenti, F., and Russo, V. E. A., 1984b, Genetic analysis of blue light induced responses in Neurospora crassa, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin-Heidelberg-New York, pp. 213–219.Google Scholar
  17. Dring, M. J., 1984, Blue light effects in marine macroalgae, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin-Heidelberg-New York, pp. 509–516.Google Scholar
  18. Dring, M. J., and Lüning, K., 1975a, Induction of two-dimensional growth and hair formation by blue light in the brown alga Scytosiphon lomentaria, Z. Pflanzenphysiol., 75: 107.Google Scholar
  19. Dring, M. J., and Lüning, K., 1975b, A photoperiodic response mediated by blue light in the brown alga Scytosiphon lomentaria, Planta, 125: 25.CrossRefGoogle Scholar
  20. Dring, M. J., and West, J. A., 1983, Photoperiodic control of tetrasporangium formation in the red alga Rhodochorton purpurum, Plant, 159: 143.CrossRefGoogle Scholar
  21. Galland, P., and Russo, V. E. A., 1979, The role of retinol in the initiation of sporangiophores of Phycomyces blakesleeanus, Planta, 146: 257.CrossRefGoogle Scholar
  22. Galland, P., and Russo, V. E. A., 1979b, Photoinduction of sporangiophores in Phycomyces mutants deficient in phototropism and in mutants lacking ß-carotene, Photochem. Photobiol., 29: 1009.CrossRefGoogle Scholar
  23. Galland, P., and Russo, V. E. A., 1984, Light and dark adaptation in Phycomyces phototropism, J. Gen. Physiol., in press.Google Scholar
  24. Galston, A. W., 1949, Riboflavin-sensitized photooxidation of indoleacetic acid and related compounds, Proc. Natl. Acad. Sci. USA, 35: 10.CrossRefGoogle Scholar
  25. Gray, W. D., 1938, Am. J. Bot., 25: 511.CrossRefGoogle Scholar
  26. Gressel, J., and Rau, W., 1983, Photocontrol of fungal development, in: “Encyclopedia of Plant Physiology,” New Series, W. Shropshire and H. Mohr, eds., Springer-Verlag, Berlin-Heidelberg, 16: 603.Google Scholar
  27. Harding, R. W., and Melles., S., 1983, Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants, Plant Physiol., 72: 996.PubMedCrossRefGoogle Scholar
  28. Hirsch, H. M., 1954, Environmental factors influencing the differentiation of protoperithecia and their relation to tyrosinase and melanin formation in Neurospora crassa, Physiol. Plant., 7: 72.CrossRefGoogle Scholar
  29. Horwitz, B. A., and Gressel, J., 1983, Elevated riboflavin requirement for postphotoinductive events in sporulation of a Trichoderma auxotroph, Plant Physiol., 71: 200.PubMedCrossRefGoogle Scholar
  30. Horwitz, B. A., Gressel, J., and Malkin, S., 1984, The quest for Trichoderma cryptochrome, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin, pp. 237–249.Google Scholar
  31. Johnson, T. E., 1978, Isolation and characterization of perithecial development. mutants in Neurospora, Genetics, 88: 27.PubMedGoogle Scholar
  32. Kumagai., T., 1980, Blue and near ultraviolet reversible photoreaction in conidial development of certain fungi, in: “The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin, pp. 251–260.Google Scholar
  33. Lipson, E. D., 1980, Sensory transduction in Phycomyces photoresponses, in:“The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin-Heidelberg-New York, pp. 110–118.Google Scholar
  34. Lüning, K., 1981, Egg release in gametophytes of Laminaria saccharina: Induction by darkness and inhibition by blue light and UV, Br. Phycol. J., 16: 379.CrossRefGoogle Scholar
  35. Lüning, K., and Dring, M. J., 1975, Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina growth in blue and red light, Mar. Biol. (Berl.), 29: 195.CrossRefGoogle Scholar
  36. Margraf, W., 1984, Orange yellow pigments in the basidiomycete Pleurotus ostreatus (Jacq. Ex. Fr.) Kummer, I: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin-Heidelberg-New York. pp. 55–59.Google Scholar
  37. Mitzka-Schnabel, U., Warm, E., and Rau, W., 1984, Light-induced changes in the protein pattern translated in vivo and in vitro accompanying carotenogenesis in Neurospora crassa and Fusarium aquaeductum, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin-Heidelberg, pp. 264–269.Google Scholar
  38. Müller, S., and Clauss, H., 1976, Aspects of photomorphogenesis in the brown algae Dictyota dichotoma, Z. Pflanzenphysiol., 78: 461.Google Scholar
  39. Otto, M. K., Jayaram, M., Hamilton, R. M., and Delbrück, M., 1981, Replacement of riboflavin by an analogue in the blue light photoreceptor of Phycomyces, Proc. Natl. Acad. Sci. USA, 78: 266.PubMedCrossRefGoogle Scholar
  40. Paietta, J., and Sargent, M. L., 1981, Photoreception in Neurospora crassa: Correlation of reduced light sensitivity with flavin deficiency, Proc. Natl. Acad. Sci. USA, 78: 5573.PubMedCrossRefGoogle Scholar
  41. Pohl, U., Degli Innocenti, F., and Russo, V. E. A., 1983, Effect of carbon dioxide on differentiation and on the level of a soluble b-type cytochrome in Phycomyces blakesleeanus, Planta, 158: 51.CrossRefGoogle Scholar
  42. Pohl, U., and Russo, V. E. A., 1984, Phototropism, in: “Membranes and Sensory Transduction,” G. Colombetti and F. Lenci, eds., Plenum, New York, pp. 231–329.Google Scholar
  43. Potapova, T. V., Levina, N. N., Belozerskaya, T. A., Kritsky, M. S., and Chailakhian, L. M., 1984, Investigation of electrophysiological responses on Neurospora crassa to blue light, Arch. Microbiol., 137: 262.CrossRefGoogle Scholar
  44. Presti, D., Hsu, W. J., and Delbrück, M., 1977, Phototropism in Phycomyces mutants lacking ß-carotene, Photochem. Photobiol., 26: 403.CrossRefGoogle Scholar
  45. Qualls, G. T., Stephens, K., and White, D., 1978, Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca, Science, 201: 444.PubMedCrossRefGoogle Scholar
  46. Rakoczy, L., 1980, Effect of blue light on metabolic processes, development and movement in true slime molds, in: “The Blue Light Syndrome,” H Senger, ed., Springer, Berlin-Heidelberg-New York, pp. 570–583.Google Scholar
  47. Raugei, G., Dohrmann, U., Pohl, U., and Russo, V. E. A., 1982, Kinetics of photoaccumulation of ß-carotene in Phycomyces blakesleeanus, Planta, 155: 296.CrossRefGoogle Scholar
  48. Russo, V. E. A., and Galland, P., 1980, Sensory physiology of Phycomyces blakesleeanus, in: “Structure and Bonding,” Vol. 41, P. Hemmerich, ed., Springer, Berlin-Heidelberg.Google Scholar
  49. Russo, V. E. A., Galland, P. Toselli, M., and Volpi, L., 1980, Blue light induced differentiation in Phycomyces blakesleeanus, in: “The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin-Heidelberg-New York, pp. 563–569.Google Scholar
  50. Russo, V. E. A., Pohl, U., and Volpi, L., 1981, Carbon dioxide inhibits phorogenesis in Phycomyces and blue light overcomes this inhibition, Photochem. Photobiol., 34: 233.Google Scholar
  51. Sargent, M. L., and Briggs, W. R., 1967, The effects of light on a circadian rhythm of conidiation in Neurospora, Plant. Physiol., 42: 1504.PubMedCrossRefGoogle Scholar
  52. Schäfer, E., Fukshansky, L., and Shropshire, Jr., W., 1983, Action spectroscopy of photoreversible pigment systems, in: “Photomorphogenesis,” W. Shropshire, Jr., and H. Mohr, eds., Springer, Berlin-Heidelberg-New York-Tokyo, pp. 39–68.Google Scholar
  53. Schmid, R., 1984, Blue light effects on morphogenesis and metabolism in Acetabularia, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin-Heidelberg, pp. 419–432.Google Scholar
  54. Schmidt, W., 1980, Physiological blue light reception, in: “Structure and Bonding,” Vol. 41, P. Hemmerich, ed., Springer, Berlin-Heidelberg-New York.Google Scholar
  55. Schreckenbach, T., 1984, Phototaxis and Photomorphogenesis in Physarum polycephalum plasmodia, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer, Berlin., pp. 463–475.Google Scholar
  56. Schreckenbach, T., Walckhoff, B., and Verfuerth, C., 1981, Blue light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism, Proc. Natl. Acad. Sci. USA, 78: 1009.PubMedCrossRefGoogle Scholar
  57. Schrott, E. L., 1980, Dose response and related aspects of carotenogenesis in Neurospora crassa, in: “The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin-Heidelberg, pp. 309–318.Google Scholar
  58. Shropshire, Jr., W., 1972, Action spectroscopy, in: “Phytochrome,” K. Mitrakos, and W. Shropshire, Jr., eds., Academic Press, London-New York.Google Scholar
  59. Shropshire, Jr., W., and Mohr, H., 1983, “Photomorphogenesis,” Vol. 16B, Springer, Berlin-Heidelberg-New York-Tokyo.Google Scholar
  60. Tan, K. K., 1978, Light-induced fungal development, in: “The Filamentous Fungi,” J.E. Smith, and D. R. Berry, eds., Edward Arnold Ltd., London, 3: 334.Google Scholar
  61. Westergaard, M., and Mitchell, H. K., 1947, A synthetic medium favoring sexual reproduction, Am. J. Bot., 34: 573.CrossRefGoogle Scholar
  62. Wormington, W. M., and Weaver, R. F., 1976, Photoreceptor pigment that induces differentiation in the slime mold Physarum polycephalum, Proc. Natl. Acad. Sci. USA, 73: 3896.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • V. E. A. Russo
    • 1
  • J. A. A. Chambers
    • 1
  • F. Degli-Innocenti
    • 1
  • Th. Sommer
    • 1
  1. 1.Max-Planck-Institut Institut für Molekulare Genetik Abt. TrautnerBerlin 33Germany

Personalised recommendations