• Llyod L. Ingraham
  • Damon L. Meyer
Part of the Biochemistry of the Elements book series (BOTE, volume 4)


Lipoxygenase catalyzes several types of oxidations of fatty acids, as shown in Figure 18–1. The best known of these is the dioxygenase function that catalyzes the aerobic oxidation of fatty acids, particularly linoleic acid, to the hydroperoxides. More specifically, lipoxygenase catalyzes the oxidation of cis, cis-1,4-pentadienes to the hydroperoxides of cis,trans- l,3-dienes (Figure 18–2).


Ternary Complex Nonheme Iron Prostaglandin Synthetase Rhodotorula Glutinis Cupric Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bawn, C. E. H., and Sharp, J. A., 1957. Reaction of the cobaltic ion. IV. Oxidation of olefins by cobaltic salts,J. Chem. Soc. London1957: 1854–1865.Google Scholar
  2. Brady, F., Monaco, M. E., Forman, H. J., Shutz, G., and Feigelson, P., 1972. On the role of copper in activation of and catalysis by tryptophan 2, 3-dioxygenase,J. Biol. Chem247: 7915–7922.PubMedGoogle Scholar
  3. Cornelius, P. A., Vanos, G., Ryke-Schilder, R., and Vliegenthart, J. F. G., 1979. 9-L-Linoleyl hydroperoxide, a novel product from the oxygenation of linoleic acid by type-2-lipoxygenases from soybeans and peas,Biochem. Biophys. Acta 575:479–484.Google Scholar
  4. Egmond, M. R., Vliegenthart, J. F. G., and Boldingh, J., 1972. Stereospecificity of the hydrogen abstraction at carbon atom ω-8 in the oxygenation of linoleic acid by lipoxygenases from corn germ and soya beans,Biochem. Biophys. Res. Commun48: 1055–1060.PubMedCrossRefGoogle Scholar
  5. Egmond, M. R., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1973. C-11 H-abstraction from linoleic acid, the rate-determining step in lipoxidase catalysis,Biochem. Biophys. Res. Commun54: 1178–1184.PubMedCrossRefGoogle Scholar
  6. Egmond, M. R., Fasella, P. M., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1977. On the mechanism of action of soybean lipoxygenase-1: A stopped flow kinetic study of the formation and conversion of yellow and purple enzyme species,Eur. J. Biochem76: 469–479.PubMedCrossRefGoogle Scholar
  7. Feigelson, P., and Brady, F. O., 1974. Heme-containing oxygenases, inMolecular Mechanisms of Oxygen Activation, O. Hayaishi and T. Hayaishi (eds.), Academic Press, New York, pp. 87–134.Google Scholar
  8. Felton, R. H., Cheung, L. D., Phillips, R. S., and May, S. W., 1978. A resonance Raman study of substrate and inhibitor binding to protocatechuate 2, 3-dioxygenase,Biochem. Biophys. Res. Commun85: 844–850.PubMedCrossRefGoogle Scholar
  9. Foote, C. S., and Morooka Y., 1976. Chemistry of superoxide ion. 1. Oxidation of 3, 5-di-t-butyl catechol with KO2,J. Am. Chem. Soc98: 1510–1514.PubMedCrossRefGoogle Scholar
  10. Fujisawa, H., Keitaro, H., Uyeda, M., Okumo, S., Nozaki, M., and Hayaishi, O., 1972. Protocatechuate 3, 4-dioxygenase. III. An oxygenated form of enzyme as reaction intermediate,J. Biol. Chem247: 4422–4428.PubMedGoogle Scholar
  11. Fujiwara, H., Golovleva, L. A., Saeki, Y., Nozaki, M., and Hayaishi, O., 1975. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from pseudomonad,J. Biol. Chem250: 4848–4855.PubMedGoogle Scholar
  12. Galliard, T., 1975. Degradation of plant lipids by hydrolytic and oxidative enzymes, inRecent Advances in the Chemistry and Biochemistry of Plant Lipids, T. Galliard and E. I. Mercer (eds.), Academic Press, New York, pp. 319–357.Google Scholar
  13. Galliard, T., and Chan, H. W. S., 1980. Lipoxygenases, inBiochemistry of Plants: A Comprehensive Treatise, Vol. 4, Lipids: Structure and Function, P. K. Stumpf and E. E. Conn (eds.), Academic Press, New York, pp. 131–161.Google Scholar
  14. Gibian, M. J., and Gallaway, R. A., 1977. Chemical aspects of lipoxygenase reactions, inBioorganic ChemistryI, E. E. van Tamelen (ed.), Academic Press, New York, pp. 111–113.Google Scholar
  15. Grinstead, R. R., 1964. Metal catalyzed mechanism of pyrocatechase action,Biochemistry3: 1308–1314.PubMedCrossRefGoogle Scholar
  16. Grosch, W., and Laskawy, G., 1979. Co-oxidation of carotenes requires one soybean lipoxygenase isozyme,Biochim. Biophys. Acta575: 439–445.PubMedGoogle Scholar
  17. Hamberg, M., and Hamberg, G., 1980. On the mechanism of the oxygenation of arachidonic acid by human platelet lipoxygenase,Biochem. Biophys. Res. Commun95: 1090–1097.PubMedCrossRefGoogle Scholar
  18. Hamberg, M., and Samuelsson, B., 1967a. Oxygenation of unsaturated fatty acids by vesicular gland of sheep,J. Biol. Chem242: 5344–5354.Google Scholar
  19. Hamberg, M., and Samuelsson, B., 1967b. On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxygenase,J. Biol. Chem242: 5329–5335.Google Scholar
  20. Hamberg, M., and Samuelsson, B., 1973. Detection and isolation of the endoperoxide intermediate in prostaglandin biosynthesis,Proc. Natl. Acad. Sci. U.S.A70: 899–903.PubMedCrossRefGoogle Scholar
  21. Hamberg, M., and Samuelsson, B., 1974. Prostaglandin endoperoxides: Novel transformations of arachidonic acid in human platelets,Proc. Natl. Acad. Sci. U.S.A71: 3400–3404.PubMedCrossRefGoogle Scholar
  22. Hamilton, G. A., 1971. The proton in biological redox reactions, inProgress in Bioorganic Chemistry, Vol. 1, E. T. Kaiser and F. J. Keady (eds.), Wiley Interscience, New York, pp. 142–148.Google Scholar
  23. Hamilton, G. A., 1974. Chemical models and mechanisms for oxygenases, inMolecular Mechanisms of Oxygen Activation, O. Hayaishi (ed.), Academic Press, New York, pp. 443–445.Google Scholar
  24. Hayaishi, O., 1969. Electronic aspects of the catalysis of the oxygenases,Ann. N. Y. Acad. Sci158: 318–335.PubMedCrossRefGoogle Scholar
  25. Hayaishi, O., Rothberg, S., Mehler, A. H., and Saito, Y., 1957a. Studies on oxygenase: Enzymatic formation of kynurenine from tryptophane,J. Biol. Chem299: 889–896.Google Scholar
  26. Hayaishi, O., Katagiri, M., and Rothberg, S., 1957b. Studies on oxygenases: Pyrocatechase,J. Biol. Chem229: 905–920.Google Scholar
  27. Hayaishi, O., Hirata, F., Ohnishi, T., Henry, J.-P., Rosenthal, I., and Katoh, A., 1977. Indoleamine 2, 3-dioxygenase: Incorporation of 18O2 and 18O2 into the reaction products,J. Biol. Chem252: 3548–3550.PubMedGoogle Scholar
  28. Hemler, M., Lands, W. E. M., and Smith, W. L., 1976. Purification of the cyclooxygenase that forms prostaglandins,J. Biol. Chem251: 5575–5579.PubMedGoogle Scholar
  29. Hou, C. T., Lillard, M. O., and Schwartz, R. D., 1976. Protocatechuate 3, 4-dioxygenase from Acinetobacter calcoaceticus,Biochemistry15: 582–588.PubMedCrossRefGoogle Scholar
  30. Ishimura, Y., Nozaki, M., and Hayaishi, O., 1967, Evidence for an oxygenated intermediate in the tryptophan pyrrolase reaction,J. Biol. Chem242: 2574–2576.PubMedGoogle Scholar
  31. Ishimura, Y., Nozaki, M., Hayaishi, O., Nakamura, T., Tamura, M., and Yamazaki, I., 1970. The oxygenated form of t,-tryptophan 2, 3-dioxygenase as reaction intermediate,J. Biol. Chem245: 3593–3602.PubMedGoogle Scholar
  32. Keyes, W. E., Loehr, T. H., and Taylor, M. L., 1978. Raman spectral evidence for tyrosine coordination of iron in protocatechuate 3, 4-dioxygenase,Biochem. Biophys. Res. Commun83: 941–945.PubMedCrossRefGoogle Scholar
  33. Kishore, G. M., and Snell, E. E., 1981. Kinetic investigations on a flavoprotein oxygenase: 2Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase,J. Biol. Chem256: 4228–4233.PubMedGoogle Scholar
  34. Kishore, G. M., and Snell, E. E., 1981b. Interaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase with FAD, substrates and analogues,J. Biol. Chem256: 4234–4240.Google Scholar
  35. Kishore, G. M., and Snell, E. E., 1981c. 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase: Molecular and catalytic characteristics, inOxygen and Oxy-radicals in Chemistry and Biology, M. A. Rodger and E. L. Powers (eds.), Academic Press, New York, pp. 521–534.Google Scholar
  36. Krishnamurty, H. G., and Simpson, F. J., 1970. Degradation of rutin byAspergillus flavus: Studies with oxygen 18 on the action of a dioxygenase on quercetin,J. Biol. Chem245: 1467–1471.PubMedGoogle Scholar
  37. Lauffer, R. B., Heistand, R. H., II, and Que, J., Jr., 1981. Dioxygenase model studies: Reaction of oxygen with iron catecholates,J. Am. Chem. Soc103: 3947–3949.CrossRefGoogle Scholar
  38. Lindblad, B., Lindstedt, B. G., and Lindstedt, S., 1970. The mechanism of enzymic formation of homogentisate fromp-hydroxyphenyl-pyruvate,J. Am. Chem. Soc92: 7446–7449.PubMedCrossRefGoogle Scholar
  39. Lindstedt, G., and Lindstedt, S., 1970. Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver;J. Biol. Chem. 245: 4178–4186.PubMedGoogle Scholar
  40. Maeno, H., and Feigelson, P., 1965. The participation of copper in tryptophan pyrrolase action,Biochem. Biophys. Res. Commun21: 297–302.PubMedCrossRefGoogle Scholar
  41. Maeno, H., and Feigelson, P., 1968. Studies on the interaction of carbon monoxide with tryptophan oxygenase of pseudomonads,J. Biol. Chem243: 301–305.PubMedGoogle Scholar
  42. Makino, R., and Ishimura, Y., 1976. Negligible amount of copper in hepatic L-tryptophan 2, 3-dioxygenase,J. Biol. Chem251: 7722–7725.PubMedGoogle Scholar
  43. Marnett, L. J., Wlodawer, P., and Samuelsson, B., 1974. Light emission during the action of prostaglandin synthetase,Biochem. Biophys. Res. Commun60: 1286–1294.PubMedCrossRefGoogle Scholar
  44. Marnett, L. J., Wlodawer, P., and Samuelsson, B., 1975. Co-oxygenation of organic substrates by the prostaglandin synthetase of sheep vesicular gland,J. Biol. Chem250: 8510–8517.PubMedGoogle Scholar
  45. Marnett, L. J., Bienkowski, M. J., and Pagels, W. R., 1979. Oxygen 18 investigation of the prostaglandin synthetase-dependent co-oxidation of diphenylisobenzofuran,J. Biol. Chem254: 5077–5082.PubMedGoogle Scholar
  46. Mason, H. S., 1957. Mechanisms of oxygen metabolism,Adv. Enzymol19: 74–322.Google Scholar
  47. May, S. W., Phillips, R. S., and Oldham, C. D., 1978, Interaction of protocatechuate 3, 4-dioxygenase with fluoro substituted hydroxybenzoic acid and related compounds,Biochemistry17: 1853–1860.PubMedCrossRefGoogle Scholar
  48. Mayer, R., Widon, J., and Que, L. J., Jr., 1979. Involvement of superoxide in the reactions of the catechol dioxygenases,Biochem. Biophys. Res. Commun92: 285–291.CrossRefGoogle Scholar
  49. Miyamoto, T., Ogino, N., Yamamoto, S., and Hayaishi, O., 1976. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes,J. Biol. Chem251: 2629–2636.PubMedGoogle Scholar
  50. Morris, L. J., and Marshall, M. O., 1966. Occurrence of cis, traps-linoleic acid in seed oils,Chem. Ind. (London)1966: 1493–1494.Google Scholar
  51. Muto, S., and Bruice, T. C., 1981a . Dioxygen transfer from 4a-hydroperoxy flavin anion. 2. Oxygen transfer to the 10 position of 9-hydroxyphenanthrene anions and to 3, 5-di-t-buty-catechol anion,J. Am. Chem. Soc. 102:4472–4480.CrossRefGoogle Scholar
  52. Muto, S., and Bruice, T. C., 1981b. Dioxygen transfer from 4a-hydroperoxy flavin anion. 3. Oxygen transfer to the 3-position of substituted indoles,J. Am. Chem. Soc102: 7559–7564.CrossRefGoogle Scholar
  53. Nakata, H., Yamauchi, T., and Fujisawa, H., 1978. Studies on the reaction intermediate of protocatechuate 3,4-dioxygenase: Formation of enzyme-product complex,Biochem. Biophys. Acta527: 171–181.PubMedGoogle Scholar
  54. Nicolaou, K. C., and Gasic, G. P., 1978. Synthesis and biological properties of prostaglandin endoperoxides,Angew. Chem. Int. Ed. Engl17: 293–312.PubMedCrossRefGoogle Scholar
  55. Nozaki, M., 1979. Oxygenases and dioxygenases, inTopics in Current Chemistry; Biochemistry 78, M. J. S. Dewar, (eds.), Springer-Verlag, pp. 145–186.Google Scholar
  56. Nugteren, D. H., and Hazelhof, E., 1973. Isolation and properties of intermediates in prostaglandin biosynthesis,Biochim. Biophys. Acta326: 448–461.PubMedGoogle Scholar
  57. Nugteren, D. H., Beerthius, R. L., and Van Dorp, D. A., 1967. Biosynthesis of prostaglandins,Prostaglandins(Proceedings of the 2nd Nobel Symposium, Stockholm) 1966: 45–50.Google Scholar
  58. O’Connor, D. E., Micheliech, E. D., and Coleman, M. C., 1981. Isolation and characterization of bicycloendoperoxides derived from methyl linolenate,J. Am. Chem. Soc103: 223–224.CrossRefGoogle Scholar
  59. Ohki, S., Ogino, N., Yamamoto, S., and Hayaishi, O., 1979. Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular and gland microsomes,J. Biol. Chem254: 839.Google Scholar
  60. Ohnishi, T., Hirata, F., and Hayaishi, O., 1977. Indoleamine 2, 3-dioxygenase: Potassium superoxide as a substrate,J. Biol. Chem252: 4643–4647.PubMedGoogle Scholar
  61. Oka, T., and Simpson, F. J., 1971. Quercetinase, a dioxygenase containing copper,Biochem. Biophys. Res. Commun43: 1–5.PubMedCrossRefGoogle Scholar
  62. Oka, T., Simpson, F. J., and Krishnamurty, H. G., 1972. Degradation of rutin by Aspergillus favus: Studies on specificity, inhibition and possible reaction mechanism of quercitinase,Can. J. Microbiol18: 493–508.PubMedCrossRefGoogle Scholar
  63. Peisach, J., Fugisawa, H., Blumberg, W. E., and Hayaishi, O., 1972. The role of substrate in the binding of O2 to the non-heme iron containing oxygenase, protocatechuate 3, 4-dioxygenase,Fed. Proc. Fed. Am. Soc. Exp. Biol 31(Abstr. No. 1304).Google Scholar
  64. Pistorius, E. K., Alexrod, B., and Palmer, G., 1976. Evidence for the participation of iron in lipoxygenase reaction from optical and electron spin resonance studies,J. Biol. Chem251: 7144–7148.PubMedGoogle Scholar
  65. Poillon, W. M., Maeno, H., Koike, K., and Feigelson, P., 1969. Tryptophan oxygenase ofPseudomonas acidovorous: Purification, composition and subunit structure,J. Biol. Chem244: 3447–3456.PubMedGoogle Scholar
  66. Que, L. J., Jr., and Heistand, R. H. II, 1979. Resonance Raman studies on pyrocatechase,J. Am. Chem. Soc101: 2219–2221.CrossRefGoogle Scholar
  67. Que, L. J., Jr., Lipscomb, J. D., Zimmermann, R., Munck, E., Orme-Johnson, N. R., and OrmeJohnson, W. H., 1976. Mossbauer and EPR spectroscopy on protocatechuate 3, 4-dioxygenase fromPseudomonas aeruginosa, Biochim. Biophys. Acta452: 320–334.Google Scholar
  68. Que, L. J., Jr., Lipscomb, J. D., Minck, E., and Wood, J. M., 1977. Protocatechuate 3, 4-dioxygenase inhibitor studies and mechanistic implications,Biochim. Biophys. Acta485: 60–74.PubMedGoogle Scholar
  69. Rahimtula, A., and O’Brien, P. J., 1976. The possible involvement of singlet oxygen in prostaglandin biosynthesis.Biochem. Biophys. Res. Commun70: 893–899.PubMedCrossRefGoogle Scholar
  70. Rogic, M., and Demmin, T. R., 1978. Cleavage of carbon-carbon bonds—Copper(II) induced oxygenolysis ofo-benzoquinones, catechols and phenols: On the question of nonenzymatic oxidation of aromatics and activation of molecular oxygen,J. Am. Chem. Soc100: 5472–5487.CrossRefGoogle Scholar
  71. Rundgren, M., 1977. Steady state kinetics of 4-hydroxy-phenylpyruvate dioxygenase from human liver (III),J. Biol. Chem252: 5094–5099.PubMedGoogle Scholar
  72. Saeki, Y., Nozaki, M., and Senoh, S., 1980. Cleavage of pyrogallol by non-heme iron-containing dioxygenase,J. Biol. Chem255: 8465–8471.PubMedGoogle Scholar
  73. Samuelsson, B., 1972. Biosynthesis of prostaglandins,Fed. Proc. Fed. Am. Soc. Exp. Biol31: 1442–1450.Google Scholar
  74. Samuelsson, B., Granstrom, E., and Hamberg, M., 1967. The mechanism of the biosynthesis of prostaglandins,Prostaglandins(Proceedings of the 2nd Nobel Symposium, Stockholm) 1966: 31–44.Google Scholar
  75. Schutz, G., and Feigelson, P., 1972. Purification and properties of rat liver tryptophan oxygenase,J. Biol. Chem247: 5327–5332.PubMedGoogle Scholar
  76. Siegel, B., 1979. a-Ketoglutarate dependent dioxygenase: A mechanism for prolyl hydroxylase action,Bioorg. Chem. 8:219–226CrossRefGoogle Scholar
  77. Sparrow, L. G., Ho, P. P. P., Sandaram, T. K., Zach, D., Nyns, E. J., and Snell, E. E., 1969. The bacterial oxidation of vitamin B6. VII. Purification, properties and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring,J. Biol. Chem244: 2590–2600.PubMedGoogle Scholar
  78. Takeda, K., Kawai, S., Tetsuka, T., and Konno, K., 1976. Stimulation of rotocollagen-proline hydroxylase, activity by nucleoside triphosphate,Biochem. Biophys. Res. Commun69: 957–961.PubMedCrossRefGoogle Scholar
  79. Taniguchi, T., Sono, M., Hirata, F., Hayaishi, O., Tamura, M., Hayaishi, K., Iizuki, K., and Ishimura, Y., 1979. Indoleamine 2, 3-dioxygenase: Kinetic studies on the binding of superoxide anion and molecular oxygen to enzyme,J. Biol. Chem254: 3288–3294.PubMedGoogle Scholar
  80. Tatsumo, Y., Saeki, Y., Iwaki, M., Yagi, T., and Nozaki, M., 1978. Resonance Raman spectra of protocatechuate 3, 4-dioxygenase: Evidence for coordination of tyrosine residue to ferric ion,J. Am. Chem. Soc100: 4614–4615.CrossRefGoogle Scholar
  81. Teng, J. I., and Smith, L. L., 1973. Steroid metabolism. XXIV. On the unlikely participation of singlet molecular oxygen in several enzyme oxygenations,J. Am. Chem. Soc95: 4060–4061.PubMedCrossRefGoogle Scholar
  82. Theorell, H., Bergstrom, S. J., and Akeson, A., 1947. Crystalline lipoxidase,Acta Chem. Scand1: 571–576.PubMedCrossRefGoogle Scholar
  83. Tyson, C. A., 1975. 4-Nitrocatechol as a colorimetric probe for non-heme dioxygenases,. Biol. Chem. 250:1765–1770Google Scholar
  84. Veldink, G. A., Vliegenthart, J. F. G., and Boldnigh, J., 1977. Plant lipoxygenases,Prog. Chem. Fats Other Lipids15: 131–166.PubMedCrossRefGoogle Scholar
  85. Vliengenthart, J. F. G., Veldink, G. A., and Boldingh, J., 1979. Recent progress in the study on the mechanism of action of soybean lipoxygenase,J. Agric. Food Chem27: 623–626.CrossRefGoogle Scholar
  86. Wondrack, L. M., Hsu, C.-A., and Abbott, M. T., 1978. Thymine 7-hydroxylase and pyrimidine deoxyribonucleoside 2’-hydroxylase activities inRhodotorula glutinis, J. Biol. Chem. 253: 6511–6515.Google Scholar
  87. Wondrack, L. M., Warn, B. J., Saewert, M. D., and Abbott, M. T., 1979. Substitution of nucleoside triphosphates for ascorbate in the thymine 7-hydroxylase reaction ofRhodotorula glutinis, J. Biol. Chem. 254: 26–29.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Llyod L. Ingraham
    • 1
  • Damon L. Meyer
    • 1
  1. 1.University of California, DavisDavisUSA

Personalised recommendations