Skip to main content

Time-Resolved Fluorescence Microscopy: Examples of Applications to Biology

  • Chapter
Laser Photobiology and Photomedicine

Part of the book series: Ettore Majorana International Science Series ((PHYSC,volume 22))

Abstract

Fluorescence microscopy (microfluorimetry) is an established technique that provides useful information about the biomolecules in a cellular environment[1,2]. The technique consists in exciting the samples (cells or part of them) with a light source of suitable wavelength, and in detecting and processing the fluorescence emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Undenfriend, “Fluorescence Assay in Biology and Medicine,” Vol. II, Academic Press, New York (1969).

    Google Scholar 

  2. J. Duchesne, “Physicochemical Properties of Nucleic Acids,” Vol. I, Academic Press, New York (1973).

    Google Scholar 

  3. F. Ruch and U. Leeman, Cytofluorometry, in: “Micromethods in Molecular Biology,” V. Neuhoff, ed., Springer-Verlag, Berlin (1973).

    Google Scholar 

  4. G. Prenna, G. Bottiroli, and G. Mazzini, Histochem.J., 9: 15 (1977).

    Article  Google Scholar 

  5. M. Kapoor, Biol.Rev., 47: 27 (1976).

    Google Scholar 

  6. S.A. Latt, Can.J.Genet.Cytol., 19: 603 (1977).

    Google Scholar 

  7. L. Brand and J. R. Gohlke, Ann.Rev.Biochem., 41: 843 (1972).

    Article  Google Scholar 

  8. G. von Segenbusch and A. Thaer, “Fluorescence Techniques in Cell Biology,” A. Thaer and M. Sernetz, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  9. F. W. D. Rost, “Fluorescence Techniques in Cell Biology,” A. Thaer and M. Sernetz, eds., Springer-Verlag, Berlin (1973).

    Google Scholar 

  10. S. Cova, G. Prenna, and G. Mazzini, Histochem.J., 6: 279 (1974).

    Article  Google Scholar 

  11. A. Andreoni, A. Longoni, C. A. Sacchi, O. Svelto, and G. Bottiroli, “Tunable Lasers and Applications,” A. Mooradian, T. Jäger, and P. Stokseth, Springer-Verlag, Heidelberg, New York (1976).

    Google Scholar 

  12. G. Bottiroli, G. Prenna, A. Andreoni, C. A. Sacchi, and O. 13. Svelto, Photochem.Photobiol., 29: 23 (1979).

    Article  Google Scholar 

  13. A. Andreoni, S. Cova, G. Bottiroli, and G. Prenna, Photochem. Photobiol., 29:951 (1979).

    Google Scholar 

  14. F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli, and I. Freitas, An automatic pulsed laser microfluorometer with high spatial and temporal resolution, J.Microscopy, in press.

    Google Scholar 

  15. R. Cubeddu, S. De Silvestri, and O. Svelto, Opt.Comm., 34: 460

    Google Scholar 

  16. F. Docchio, A. Longoni, and F. Zaraga, Rev.Sci.Instrum., 52: 1671

    Google Scholar 

  17. G. Bottiroli, P. G. Cionini, F. Docchio, and C. A. Sacchi, In situ evaluation of the functional state of chromatin by means of quinacrine mustard staining and time-resolved fluorescence microscopy, Histochem.J., 16: (1984) in press.

    Google Scholar 

  18. D. E. Comings, B. W. Kovacs, E. Avelino, and D. C. Harris, Chromosoma, 50: 111 (1975).

    Google Scholar 

  19. C. Nicolini, Basic Appi.Histochem., 25: 319 (1981).

    Google Scholar 

  20. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, and A. Mittleman, Cancer Res., 38: 2628 (1978).

    Google Scholar 

  21. A. E. Profio, D. R. Doiron, and E. G. King, Med.Phys., 6: 523 (1979).

    Article  Google Scholar 

  22. R. L. Lipson, E. J. Baldes, and A. M. Olsen, J.Natl.Cancer Inst., 26: 1 (1961).

    Google Scholar 

  23. J. Moan and S. Sommer, Photobiochem.Photobiophys., 3: 93 (1981).

    Google Scholar 

  24. R. Bonnet, R. J. Ridge, P. A. Scourides, and M. C. Rosenbaum, J.Chem.Soc.Perkin T., 12: 3135 (1981).

    Article  Google Scholar 

  25. D. Kessel and T. Chow, Cancer Res., 43: 1994 (1983).

    Google Scholar 

  26. F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli, and I. Freitas, Time-resolved fluorescence spectroscopy of Hemato- porphyrin-Derivative (HpD) in human lymphocytes, Chem.Biol. Inter., in press.

    Google Scholar 

  27. G. Bottiroli, I. Freitas, F. Docchio, R. Ramponi, and C. A. Sacchi, The time-dependent behavior of Hematoporphyrin- Derivative in saline: A study of spectral modifications, Chem.Biol.Inter., in press.

    Google Scholar 

  28. J. Moan and S. Sommer, Photobiochem.Photobiophys., 3: 93 (1981).

    Google Scholar 

  29. S. B. Brown, H. Hatzikonstantinov, and D. G. Herries, Int.J.Biochem., 12:701 (1981).

    Google Scholar 

  30. W. J. M. Van der Putten and M. J. C. Van Gemert, Hematoporphy-rin-Derivative fluorescence spectra in vitro and an animal tumor, in: “Proc. Laser 81 Opto-Elektronik,” München, West Germany (1981).

    Google Scholar 

  31. G. Jori - personal communication.

    Google Scholar 

  32. M. W. Berns, A. Dahlman, F. M. Johnson, R. Burns, D. Sperling, M. Guiltinan, A. Siemens, R. Walter, W. Wright, M. Hammer- Wilson, and A. Wile, Cancer Res., 42: 2325 (1982).

    Google Scholar 

  33. F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli, and I. Freitas, Fluorescence studies of biological molecules by laser irradiation, in: “New Frontiers in Laser Medicine and Surgery,” K. Atsumi, ed., Excerpta Medica, Amsterdam (1983).

    Google Scholar 

  34. G. Bottiroli, I. Freitas, F. Docchio, R. Ramponi, and C. A. Sacchi, Towards a better understanding of the mechanism of action of Hematoporphyrin-Derivative at the cellular level, in: “Proc. 13th Cancer Congress,” Seattle, USA (1982).

    Google Scholar 

  35. A. Pasqua, A. Poletti, and S. M. Murgia, Med.Biol.Environ., 10: 287 (1982).

    Google Scholar 

  36. F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli, and I. Freitas, Time-resolved fluorescence microscopy of Hematoporphyr in-Derivative in cells, Lasers in Surgery and Medicine, 2: 21 (1982).

    Article  Google Scholar 

  37. F. Docchio, R. Ramponi, C. A. Sacchi, G. Bottiroli, and I. Freitas, Time-resolved fluorescence microscopy of Hemato- porphyrin-Derivative in tissue- and culture-cells, in: “Laser Tokyo ’81,” K. Atsumi and N. Nimsakul, Inter Group Corp., Tokyo (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Docchio, F., Ramponi, R., Sacchi, C.A., Bottiroli, G., Freitas, I. (1985). Time-Resolved Fluorescence Microscopy: Examples of Applications to Biology. In: Martellucci, S., Chester, A.N. (eds) Laser Photobiology and Photomedicine. Ettore Majorana International Science Series, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2461-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2461-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9494-8

  • Online ISBN: 978-1-4613-2461-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics