Advertisement

The Influence of Oxygen-Radicals on the Mechanisms of Conformational Changes and Denaturation of Haemoglobin Induced by UV Irradiation

  • H. Malak
Part of the Ettore Majorana International Science Series book series (EMISS, volume 22)

Abstract

Photooxidizing properties of haemoglobin are stimulated by the presence of a haem group in this compound. Haem is a very good photosensitizer to the processes generating such oxygen species as\({\text{O}}\tfrac{ \cdot }{2} \), 1O2, H2O2, OH (1–3).

Keywords

Superoxide Dismutase Oxygenate Product Haem Group Haemoglobin Solution Irradiate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Foote, Oxygen and Oxy-Radicals in Chemistry and Biology, pp. 425–433, Academic Press, New York (1981).Google Scholar
  2. 2.
    C. S. Foote, in: “Pathology of Oxygen,” pp. 21–37, Academic Press, New York (1982).Google Scholar
  3. 3.
    J. D. Spikes, Adv. Radiat. Biol., 3–29 (1969).Google Scholar
  4. 4.
    L. Pauling, in: “Hemoglobin” pp. 57–65, Butterworth Co. Publishers, Ltd., London (1949).Google Scholar
  5. 5.
    L. Pauling, Nature 203, 182–183 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    L. D. Possnani, R. Banerjee, C. Balny, and P. Dauzon, Nature 226, 861–862 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. Weiss, Nature 202, 83–84 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    A. J. Thomson, Nature 265, 15–16 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    L. S. Demma and J. M. Salhany, J.Biol.Chem., 252, 1226–1230 (1977).Google Scholar
  10. 10.
    L. S. Demma and J. M. Salhany, J.Biol.Chem., 254, 4532–4535 (1979).Google Scholar
  11. 11.
    R. Wever, B. Oudega and B. F. Van Gelder, Biochem.Biophys.Acta 302, 475–478 (1973).Google Scholar
  12. 12.
    H. P. Misra and I. Fridovich, J.Biol.Chem., 247, 6960–6962 (1972).Google Scholar
  13. 13.
    W. J. Wallace, J.C. Maxwell, and W.S. Cauhey, Biochem. Biophys. Res. Commun., 57, 1104–1110 (1974).Google Scholar
  14. 14.
    M. Brunori, G. Falcioni, E. Fioretti, B. Giardina, and G. Rotilio, Eur.J.Biochem., 53, 99–104 (1975).CrossRefGoogle Scholar
  15. 15.
    A. Tomoda, K. Sugimotco, M. Suhara, M. Tekeshita, Y. Yoneyama, Bioch.J., 171, 329–335 (1978).Google Scholar
  16. 16.
    E. Rachmlewitz and J. White, Nature New.Biol., 241, 115–117 (1973).CrossRefGoogle Scholar
  17. 17.
    W. Koppenol, K. Van Buuren, J. Butler and R. Braams, Biochem. Biophys Acta449, 157–168.Google Scholar
  18. 18.
    F. Haber and J. Weiss, Proc.Roy.Soc. London, A., 147, 332–351 (1934).Google Scholar
  19. 19.
    D. Rowley and B. Halliwell, Febs Lett 138, 33–36 (1982).CrossRefGoogle Scholar
  20. 20.
    R. Richmond, B. Halliwell and J. Chauhan and A. Darbre, Anal.Biochem., 118: 328–335 (1981).CrossRefGoogle Scholar
  21. 21.
    J. McCord and E. Day, Febs Lett 86: 139–142 (1978).CrossRefGoogle Scholar
  22. 22.
    H. Sutton, P. Roberts and C. Winwerbourn, Biochem.J., 155: 503–510 (1976).Google Scholar
  23. 23.
    J. McCord and I. Fridovich, Photochem.Photobiol., 17, 115–123 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • H. Malak
    • 1
  1. 1.Department of PhysicsAcademy of AgriculturePoznanPoland

Personalised recommendations