The Cellular Pathobiology of Atherosclerosis In 1983

  • Robert W. Wissler


The main components of the advanced atherosclerotic plaque are the necrotic cholesteryl ester-rich core from which the disease process gets part of its name (the Greek stem “athero” means gruel or porridge) and the fibrous (sclerotic) cap which contains predominantly smooth muscle cells which often become encased in their own synthesis products of collagen, elastin and proteoglycans. Typically, many of these cells and their surrounding intercellular matrix are associated with abundant lipids which are demonstrable both chemically and morphologically. Most of the signs and symptoms and most of the life- threatening effects of atherosclerosis are due to these major components. They result in its being the leading cause of death and morbidity in the urban-industrial countries of the world, especially in Europe and North America.


Smooth Muscle Cell Cholesteryl Ester Lower Density Lipoprotein Familial Hypercholesterolemia Familial Hypercholesterolemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Wissler, Development of the atherosclerotic plaque, in: Myocardium: Failure and Infarction, E. Braunwald, ed., p. 155, H. P. Publishing Co., New York (1974).Google Scholar
  2. 2.
    R. W. Wissler, The emerging cellular pathobiology of atherosclerosis, Artery 5: 409 (1979).PubMedGoogle Scholar
  3. 3.
    R. Ross, Atherosclerosis: A problem of the biology of arterial wall cells and their interactions with blood components, Arteriosclerosis 1: 293 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Steinberg, Lipoproteins and atherosclerosis: A look back and a look ahead, Arteriosclerosis 3: 283 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    R. W. Wissler and D. Vesselinovitch, The pathobiology of the artherosclerotic plaque in the mid-1980s, in: “Regression of atherosclerotic lesions: Experimental studies and observations in humans,” R. Malinow and V. Blaton, eds., Plenum Press, New York (1984).Google Scholar
  6. 6.
    R. Ross and J. A. Glomset, The pathogenesis of atherosclerosis, New Eng. J. Med. 295: 369, 420 (1976).Google Scholar
  7. 7.
    R. W. Wissler, Conference on the Health Effects of Blood Lipids: Optimal Distributions for Populations, Workshop Report: Laboratory-Experimental Section, Prev. Med. 8: 175 (1979).CrossRefGoogle Scholar
  8. 8.
    V. C. Y. Kao, R. W. Wissler, and K. Fischer-Dzoga, The influence of hyperlipemic serum on the growth of medial smooth muscle cells of rhesus monkey aorta in vitro, Circulation 38 (Suppl. VI): 12 (1968).Google Scholar
  9. 9.
    K. Fischer-Dzoga and R. W. Wissler, Stimulation of proliferation in stationary primary cultures of monkey aortic smooth muscle cells, II. Effect of varying concentrations of hyperlipemic serum and low-density lipoproteins of varying dietary fat origins, Atherosclerosis 24: 515 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    R. W. Wissler, Interactions of low-density lipoproteins from hypercholesterolemic serum with arterial wall cells and their extracellular products in atherogenesis and regression, in: “The Biochemistry of Atherosclerosis,” A. Scanu, R. W. Wissler, and G. S. Getz, eds., p. 345, Marcel Dekker, Inc., New York (1979).Google Scholar
  11. 11.
    Y. Yoshida, K. Fischer-Dzoga, and R. W. Wissler, Effects of normolipidemic high-density lipoproteins on proliferation of monkey aortic smooth muscle cells induced by hyperlipidemic low-density lipoproteins, Exp. Mol. Pathol., (In Press, 1984).Google Scholar
  12. 12.
    N. E. Miller, Prevention of coronary heart disease: The role of high-density lipoproteins, Postgrad. Med. J. 56: 575 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    S. R. Bates, Accumulation and loss of cholesterol esters in monkey arterial smooth muscle cells exposed to normal and hyperlipemic serum lipoproteins, Atherosclerosis 32: 165 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    S. R. Bates, Effect of HDL on the interaction of hyperlipemic LDL with smooth muscle cells, Artery 7: 303 (1980).PubMedGoogle Scholar
  15. 15.
    R. W. Wissler, K. Fischer-Dzoga, S. R. Bates, and R. M. Chen, Arterial smooth muscle cells in tissue culture, in: “Structure and Function of the Circulation,” Vol. III, C. J. Schwartz, N. T. Werthessen, and S. Wolf, eds., p. 427, Plenum Press, New York (1981).Google Scholar
  16. 16.
    R. W. Wissler, Atherosclerosis-its pathogenesis in perspective, in: “Comparative Pathology of the Heart (Adv. Cardiol.),” Vol. 13, F. Horaberger, ed., p. 10, S. Karger, Basel (1974).Google Scholar
  17. 17.
    R. M. Chen, G. S. Getz, K. Fischer-Dzoga, and R. W. Wissler, The role of hyperlipidemic serum on the proliferation and necrosis of aortic medial cells in vitro, Exp. Mol. Pathol. 26: 359 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    W.A. Thomas, J. M. Reiner, R. A. Florentin, K. Janakidevi, and K. J. Lee, Arterial smooth muscle cells in atherogenesis: Births, deaths and clonal phenomena, in: Atherosclerosis IV, G. Schettler, Y. Goto, Y. Hata, and G. Klose, eds., p. 16, Springer-Verlag, Berlin (1977).Google Scholar
  19. 19.
    R. W. Wissler, Principles of pathogenesis of atherosclerosis, in: Heart Disease: A Textbook of Cardiovascular Medicine, second edition, E. Braunwald, ed., p. 1185, W. B. Saunders Co., Philadelphia (1984).Google Scholar
  20. 20.
    W. C. Roberts, The status of the coronary arteries in fatal ischemic heart disease, Cardiovasc. Clin. 7: 1 (1975).PubMedGoogle Scholar
  21. 21.
    D. B. Zilversmit, Atherogenesis: A postprandial phenomenon, Circulation Res. 33: 633 (1973).PubMedGoogle Scholar
  22. 22.
    R. W. Mahley, Atherogenic hyperlipoproteinemia, The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol, Med. Clin. N. Am. 66: 375 (1982).PubMedGoogle Scholar
  23. 23.
    R. W. Mahley, H. Weisgraber, and T. Innerarity, Canine lipoproteins and atherosclerosis: II. Characterization of the plasma lipoproteins associated with atherogenic and non- atherogenic hyperlipidemia, Circ. Res. 35: 722 (1974).PubMedGoogle Scholar
  24. 24.
    G. M. Fless, R. W. Wissler, and A. M. Scanu, Study of abnormal plasma low-density lipoproteins in rhesus monkeys with diet- induced hyperlipidemia, Biochemistry 15: 5799 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    L. L. Rudel, L. L. Pitts, II, and C. A. Nelson, Characterization of plasma low-density lipoproteins of nonhuman primates fed dietary cholesterol, J. Lipid Res. 18: 211 (1977).PubMedGoogle Scholar
  26. 26.
    K. V. Krishnaiah, L. F. Walker, J. Borensztajn, G. Schonfeld, and G. S. Getz, Apolipoprotein B variant derived from the rat intestine, Proc. Nat. Acad. Sci. 17: 3806 (1980).CrossRefGoogle Scholar
  27. 27.
    G. M. Fless, T. Kirchhausen, K. Fischer-Dzoga, R. W. Wissler, and A. M. Scanu, Relationship between the properties of the apo B containing low-density lipoproteins (LDL) of normolipidemic rhesus monkeys and their mitogenic action on arterial smooth muscle cells grown in vitro, in: “Atherosclerosis V,” A. M. Gotto, Jr., L. C. Smith, and B. Allen, eds., p. 607, Springer-Verlag, New York (1980).Google Scholar
  28. 28.
    G. M. Fless, T. Kirchhausen, K. Fischer-Dzoga, R. W. Wissler, and A. M. Scanu, Serum low-density lipoproteins with mitogenic effect on cultured aortic smooth muscle cells, Atherosclerosis 41: 171 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Assmann, Lipid Metabolism and Atherosclerosis, Schauttauer Verlag, Stuttgart (1982).Google Scholar
  30. 30.
    E. P. Benditt, Implications of the monoclonal character of human atherosclerotic plaques, Am. J. Pathol. 86: 693 (1977).PubMedGoogle Scholar
  31. 31.
    J. Chamley-Campbell, G. R. Campbell, and R. Ross, The smooth muscle cell in culture, Physiol. Rev. 59: 1 (1979).Google Scholar
  32. 32.
    C. Gajdusek, P. Di Corleto, R. Ross, and S. M. Schwartz, An endothelial cell-derived growth factor, J. Cell. Biol. 85: 467 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    S. J. Leibovich and R. Ross, A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro, Am. J. Pathol. 84: 501 (1976).PubMedGoogle Scholar
  34. 34.
    E. P. Benditt and J. M. Benditt, Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Nat. Acad. Sci. 70: 1753 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    G. R. Campbell and J. H. Chamley-Campbell, The cellular patho-biology of atherosclerosis, Pathology 13: 423 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    J. L. Goldstein and M. S. Brown, The low-density lipoprotein pathway and its relation to atherosclerosis, Ann. Rev. Biochem. 46: 897 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    C. DeDuve, The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits, Acta Cardiol. Suppl. 20: 9 (1974).Google Scholar
  38. 38.
    J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, A binding site on macrophages that mediates the uptake and degradation of acetylated low-density lipoprotein producing massive cholesterol deposition, Proc. Nat. Acad. Sci. 76: 333 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    R. W. Wissler and D. Vesselinovitch, Atherosclerosis—relationship to coronary blood flow, Am. J. Cardiol. 52: 2A (1983).Google Scholar
  40. 40.
    R. W. Wissler and D. Vesselinovitch, Experimental models of human atherosclerosis, Ann. N. Y. Acad. Sci. 149: 907 (1968).PubMedGoogle Scholar
  41. 41.
    T. Schaffner, V. M. Elner, M. Bauer, and R. W. Wissler, Acid lipase: A histochemical and biochemical study using triton X100-naphthyl palmitate micelles, J. Histochem. Cytochem. 26: 969 (1978).CrossRefGoogle Scholar
  42. 42.
    T. Schaffner, K. Taylor, E. J. Bartucci, K. Fischer-Dzoga, J. H. Beeson, S. Glagov, and R. W. Wissler, Arterial foam cells exhibit distinctive immunomorphologie and histochemical features of macrophages, Am. J. Pathol. 100: 57 (1980).PubMedGoogle Scholar
  43. 43.
    D. Vesselinovitch and R. W. Wissler, Correlation of types of induced lesions with regression of coronary atherosclerosis in two species of macaques, in: “Lipoproteins and Coronary Atherosclerosis,” G. Noseda, C. Fragiacomo, R. Fumagalli, and R. Paoletti, eds., p. 401, Elsevier, Amsterdam (1982).Google Scholar
  44. 44.
    D. Vesselinovitch and R. W. Wissler, Quantitation of certain qualitative differences in the atherosclerotic process, in: “Atherosclerosis VI,” G. Schettler, A. M. Gotto, G. Middelhoff, A. S. Habenicht, and K. R. Jurutka, eds., p. 174, Springer-Verlag, Berlin (1983).Google Scholar
  45. 45.
    H. R. Davis, D. Vesselinovitch, and R. W. Wissler, Reticuloendothelial system response to hyperlipidemia in rhesus and cynomolgus monkeys, J. Leuk. Biol. (In Press, 1984).Google Scholar
  46. 46.
    R. W. Wissler and D. Vesselinovitch, New concepts of factors involved in the natural history and regression of atherosclerosis, Periodica Angiologica 5: 178 (1983).Google Scholar
  47. 47.
    A. R. Rich and J. E. Gregory, The experimental demonstration that periarteritis nodosa is a manifestation of hypersen-sitivity, Bull. Johns Hopkins Hosp. 72: 65 (1943).Google Scholar
  48. 48.
    H. C. Hopps and R. W. Wissler, The experimental production of generalized arteritis and periarteritis (periarteritis nodosa), J. Lab. Clin. Med. 31: 939 (1946).PubMedGoogle Scholar
  49. 49.
    C. R. Minick, G. E. Murphy, and W. C. Cambell, Experimental induction of therosclerosis by the synergy of allergic injury to arteries and lipid-rich diet, I. Effect of repeated injection of horse serum in rabbits fed dietary cholesterol supplement, J. Exp. Med. 124: 635 (1966).PubMedCrossRefGoogle Scholar
  50. 50.
    C. R. Minick and G. E. Murphy, Experimental induction of atherosclerosis by the synergy of allergic injury to arteries and lipid-rich diet, II. Effect of repeatedly injected foreign protein in rabbits fed a lipid-rich, cholesterol-poor diet, Am. J. Pathol. 73: 265 (1975).Google Scholar
  51. 51.
    L. M. Buja, L. D. Hillis, C. S. Petty, and J. T. Willerson, The role of coronary arterial spasm in ischemic heart disease, Arch. Pathol. Lab. Med. 105: 221 (1981).PubMedGoogle Scholar
  52. 52.
    M. L. Armstrong and M. G. Megan, Responses of two macaque species to atherogenic diet and its withdrawal, in: “Atherosclerosis III,” G. Schettler and A. Weizel, eds., p. 336, Springer- Verlags, Berlin (1974).Google Scholar
  53. 53.
    W. Hollander, B. Kirkpatrick, B. Paddock, J. Colombo, M. Nagraj, and S. Prusty, Studies on the progression and regression of coronary and peripheral atherosclerosis in the cynomolgus monkey, Exp. Mol. Pathol. 30: 55 (1979).PubMedCrossRefGoogle Scholar
  54. 54.
    D. Vesselinovitch, G. S. Getz, R. H. Hughes, and R. W. Wissler, Atherosclerosis 20: 303 (1974).PubMedCrossRefGoogle Scholar
  55. 55.
    D. Vesselinovitch, R. W. Wissler, T. J. Schaffner, and J. Borensztajn, The effects of various diets on atherogenesis in rhesus monkeys, Atherosclerosis 35: 189 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    D. Kritchevsky, S. A. Tepper, D. Vesselinovitch, and R. W. Wissler, Cholesterol vehicle in experimental atherosclerosis, Part 13, Randomized peanut oil, Atherosclerosis 17: 225 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert W. Wissler
    • 1
  1. 1.The Department of Pathology and The Specialized Center of Research in AtherosclerosisThe University of ChicagoChicagoUSA

Personalised recommendations