Review of Selected Three-Dimensional Numerical Sea Breeze Models

  • Ulrike Pechinger
Part of the Nato — Challenges of Modern Society book series (NATS, volume 7)


A review of three-dimensional sea breeze models is presented, with emphasis on model formulation and application, including simulation of transport and diffusion processes in coastal environments. Problem areas are discussed, and recommendations made for future model development.


Planetary Boundary Layer Planetary Boundary Layer Height Breeze Circulation Surface Boundary Layer Thermal Internal Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, R. A., S. Rosenthal and J. Trout, 1971: Preliminary results from an asymmetrical model of the tropical cyclone. Mon. Wea. Rev., 99, 744 – 758.ADSCrossRefGoogle Scholar
  2. Anthes, R. A., and T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other meso-meteor- ological studies. Mon. Wea. Rev., 106, 1045 - 1078.ADSCrossRefGoogle Scholar
  3. Arakawa, A., 1972: Design of the UCLA general circulation model. Department of Meteor., Univ. of Calif. Los Angeles, Techn. Rep. No. 6, 116 pp.Google Scholar
  4. Asai, T., 1965: A numerical study of the airmass transformation over the Japan Sea in winter. J. Meteor. Soc. Japan, 43, 1 – 15.Google Scholar
  5. Atwater, M. A., and P. Brown, Jr., 1974: Numerical calculation of the latitudinal variation of solar radiation for an atmosphere of varying opacity. J. Appl. Meteor., 13, 289 – 297.Google Scholar
  6. Bhumralkar, C. M., 1973: An observational and theoretical study of atmospheric flow over a heated island: part II. Mon. Wea. Rev., 101, 731 – 745.ADSCrossRefGoogle Scholar
  7. Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprint, Third Symp. Atmospheric Turbulence, Diffusion, and Air Quality, Raleigh, Amer. Meteor. Soc., 46 – 49.Google Scholar
  8. Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic planetary layers. J. Atmos. Sci., 25, 1015 – 1020.ADSCrossRefGoogle Scholar
  9. Bornstein, R. D., and A. Robock, 1976: Effects of variable and unequal time steps for advective and diffusive processes of the urban boundary layer. Mon. Wea. Rev., 104, 260 – 267.ADSCrossRefGoogle Scholar
  10. Bornstein, R. and S. Klotz, 1983: Development of the three-dimensional COASTAL-URBMET model. Quarterly Technical Report No. 7. to EPRIfrom SJSU, Dept. of Meteorology.Google Scholar
  11. Brown, J., and K. Campana, 1978: An economical time-differencing system for numerical weather prediction. Mon. Wea. Rev., 106, 1125 – 1136.ADSCrossRefGoogle Scholar
  12. Busch, N. E., 1973: On the mechanics of atmospheric turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Am. Meteor. Soc., Boston, pp. 1 – 65.Google Scholar
  13. Busch, N. E., S. Chang and R. Anthes, 1976: A multi-level model of the planetary boundary layer suitable for use with mesoscale dynamic models. J. Appl. Meteor., 15, 909 – 919.ADSCrossRefGoogle Scholar
  14. Businger, J. A., 1973: Turbulenct transfer in the atmospheric surface layer. Workshop in Micrometeorology, S. A. Haugen, Ed., Am. Meteor. Soc., Boston, Chap. 2.Google Scholar
  15. Cederwall, R. T., 1982: Review of algebraic stress models for simulating atmospheric turbulence in a three-dimensional sea- breeze model. Suppl. Quarterly Rep. EPRI-RP1630–13 from SJSU, Dept. of Meteorology.Google Scholar
  16. Clarke, R. H., 1970: Recommended methods for the treatment of the boundary layer in numerical models. Aust. Meteor. Mag., 18, 51 – 73.Google Scholar
  17. Cotton, W. R., R. Pielke and P. Gonnou, 1976: Numerical experiment on the influence of the mesoscale circulation on the cumulus scale. J. Atmos. Sci., 33, 252 – 261.ADSCrossRefGoogle Scholar
  18. Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81 – 106.ADSGoogle Scholar
  19. Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889 – 1904.ADSCrossRefGoogle Scholar
  20. Deaven, D. G., 1974: A solution for boundary problems in isentropic coordinate models. Ph.D. dissertation, The Pennsylvania State University, 136 pp.Google Scholar
  21. Dutton, J. A., and G. Fichtl, 1969: Approximate equation of motion for gases and liquids. J. Atmos. Sci., 26, 241 – 254.ADSCrossRefGoogle Scholar
  22. Estoque, M. A., 1961: A theoretical investigation of the sea breeze.Quart. J. R. Meteor. Soc., 87, 136 – 146.ADSCrossRefGoogle Scholar
  23. Estque, M. A., 1962: The sea breeze as a function of the prevailing synoptic situation. J. Atmos. Sci., 19, 244 – 250.ADSCrossRefGoogle Scholar
  24. Estoque, M. A., 1973: Numerical modeling of the planetary boundary layer. Workshop in Micrometeorology, D. A. Haugen, Ed., Am. Meteor. Soc., Boston, pp. 217 – 268.Google Scholar
  25. Estoque, M. A., 1981: Further studies of a lake breeze. Part I: Observational study. Mon. Wea. Rev., 109, 611 – 618.ADSCrossRefGoogle Scholar
  26. Estoque, M. A., and J. Gross, 1981: Further studies of a lake breeze. Part II: Theoretical study. Mon. Wea. Rev., 109, 619 – 634.ADSCrossRefGoogle Scholar
  27. Fontana, P. H., and R. Bornstein, 1979: Observations of frictional retardation of sea breeze fronts. San Jose State Univ. report to NSF, ATM 77–21467, 57 pp.Google Scholar
  28. Grimmer, M., and D. Shaw, 1967; Energy-preserving integrations of the primitive equations on the sphere. Quart. J. R. Meteor. Soc., 93, 337 – 349.ADSCrossRefGoogle Scholar
  29. Gross, J. M., 1978: Lake-effect storms on Lake Ontario. Ph.D. Thesis, University of Miami, Coral Gables, 210 pp.Google Scholar
  30. Hjelmfelt, M. R., and R. Braham, Jr., 1983: Numerical simulation of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 1ll, 205 - 219.Google Scholar
  31. Kikuchi, Y. et al., 1981: Numerical study of the effects of mountains on the land and sea breeze circulation in the Kanto district. J. Meteor. Soc. Japan, 59, 723 – 737.ADSGoogle Scholar
  32. Leith, C. E., 1969: Two-dimensional eddy viscosity coefficients. Proc. WMO/IUGG Symp. Numerical Wea. Prediction, Meteor. Soc. of Japan, Tokyo, Nov. 26–Dec. 4, 1968.Google Scholar
  33. Lewellen, W. S., R. Sykes and D. Oliver, 1983: Further developments of the A.R.A.P. model for the atmospheric marine environment. ARAP#488. Avail, from NTIS, 169 pp.Google Scholar
  34. Long, P., 1977: Personal communication to Pielke and Mahrer.Google Scholar
  35. Liu, M. K., T. Myers and J. McElroy, 1979: Numerical modeling of land and sea breeze circulation along a complex coastline.Mathematics and Computers in Simulation, 21, 359 – 367.MATHCrossRefGoogle Scholar
  36. Ludwig, F. L., 1983: A review of coastal zone meteorological processes important to the modeling of air pollution. Preprints, NATO CCMS 14th ITM on air pollution modeling and its application. Copenhagen, Denmark, Sept. 27 – 30, 1983.Google Scholar
  37. Lyons, W., and L. W. Olsson, 1973: Detailed mesometeorological studies of air pollution dispersion in the Chicago lake breeze.Mon. Wea. Rev., 101, 387 – 403.ADSCrossRefGoogle Scholar
  38. Lyons, W., J. Schuh and M. McCumber, 1979: Comparison of observed mesoscale lake breeze wind fields to computations using the University of Virginia mesoscale model. Preprints, Amer. Meteor. Soc. 4th Symposium on Turbulence, Diffusion, and Air Pollution, Reno, Nev., Jan 15 - 18, 1979.Google Scholar
  39. Mahrer, Y., and R. A. Pielke, 1975: A numerical study of the air flow over mountains using the two-dimensional version of the University of Virginia mesoscale model. J. Atmos. Sci., 32, 2144 – 2155.ADSCrossRefGoogle Scholar
  40. Mahrer, Y., and R. A. Pielke, 1976: Numerical simulation of the airflow over Barbados. Mon. Wea. Rev., 104, 1392 – 1402.ADSCrossRefGoogle Scholar
  41. Mahrer, Y., and R. A. Pielke, 1978: A test of an upstream spline interpolation technique for the advective terms in a numerical mesoscale model. Mon. Wea. Rev., 106, 818 – 830.ADSCrossRefGoogle Scholar
  42. Matsuno, T., 1966: Numerical integrations of the primitive equations by a simulated backward difference method. J. Meteor. Soc. Japan, 44, 76 – 84.Google Scholar
  43. McCumber, M. C., 1980: A numerical simulation of the influence of heat and moisture fluxes upon mesoscale circulation. Ph.D. Thesis, University of Virginia. Also issued as Rep. UVA-ENV- SCI-MES0–1980–2, Dept. Enviorn. Sci., University of Virginia, 255 pp.Google Scholar
  44. McNider, R. T., and R. Pielke, 1979: Application of the University of Virginia Model to air pollutant transport. Preprints, Amer. Meteor. Soc. Fourth Symposium on Turbulence, Diffusion, and Air Pollution, Reno, Nev., Jan 15 - 18, 1979.Google Scholar
  45. McPherson, R. D., 1968: A three-dimensional numerical study of the Texas coast sea breeze, Report No. 15, NSF Grant GA-367X, Univ. of Texas at Austin, College of Engineering, Atmospheric Science Group, 252 pp.Google Scholar
  46. Mellor, G. L., and T. Yamada, 1974: A hierarchy of Turbulence closure models for planetary boundary layer. J. Atmos. Sci., 31, 1791 – 1806.ADSCrossRefGoogle Scholar
  47. Mellor, G. L., and T. Yamada, 1977: A turbulence model applied to geophysical fluid problems, Proc. Symp. on Turbulence Shear Flows, Pennsylvania State University, State College, PA, April 18 – 20, 1977.Google Scholar
  48. Myrup, L. O., and D. Morgan, 1972: Numerical model of the urban atmosphere. U. C. Davis Report No. 4, 237 pp.Google Scholar
  49. O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 1213 – 1215.ADSCrossRefGoogle Scholar
  50. Paegle, J., W. G. Zdunkowski and R. M. Welch, 1976: Implicit differencing of predictive equation of the boundary layer.Mon. Wea. Rev., 104, 1321 – 1324.ADSCrossRefGoogle Scholar
  51. Perkey, D. J., and C. Kreitzberg, 1976: A time-development lateral boundary scheme for limited-area primitive equation models. Mon. Wea. Rev., 104, 744 – 755.ADSCrossRefGoogle Scholar
  52. Peaceman, D. W., and H. H. Rachford, Jr., 1955: The numerical solution of parabolic and elliptic differential equations, SIAM J. Appl. Math., 3, 28 – 41.MathSciNetMATHGoogle Scholar
  53. Pielke, R. A., 1974: A three-dimensional numerical model of the sea breeze over the Gulf of Florida. Mon. Wea. Rev., 102, 115 - 139.ADSCrossRefGoogle Scholar
  54. Pielke, R. A., 1981: Mesoscale numerical modeling. Adv. in Geophys., 23, 185 – 344.Google Scholar
  55. Pielke, R. A., and Y. Mahrer, 1975: Representation of the heated planetary boundary layer in mesoscale models with coarse vertical resolution. J. Atmos. Sci., 32, 2288 – 2308.ADSCrossRefGoogle Scholar
  56. Pielke, R. A., and Y. Mahrer, 1978: Verification analysis of the University of Virginia three-dimensional mesoscale model predict ion over south Florida for 1 July 1973. Mon. Wea. Rev., 106, 1568 – 1589.ADSCrossRefGoogle Scholar
  57. Santhanam K. and R. Bornstein, 1981: One-dimensional simulation of temperature and moisture in atmospheric and soil boundary layers. Preprint Vol., AMSSymposium on Turbulence, Diffusion, and Air Pollution, Atlanta, GA, 94 – 98.Google Scholar
  58. Seagal, M., R. McNider, R. A. Pielke and D. McDougal, 1982: A numerical model simulaltion of the regional air pollution meteorology of the Greater Chesapeake Bay area—Summer day case study. Atmos. Environ., 16, 1381 – 1398.CrossRefGoogle Scholar
  59. Segal, M., R. A. Pielke and Y. Mahrer, 1980: Quantitative assessment of air quality in the Greater Chesapeake Bay area using a three-dimensional atlmospheric model. Proc. Symp. on Intermediate Range Atmos. Transport Processes and Technol. Assess., Gatlinburg, Tenn. Oct. 1 – 3, 1980.Google Scholar
  60. SethuRaman, S., 1982: Proceedings of the workshop on coastal atmospheric transport processes. BNL-report51666, Brook- haven, 43 pp.Google Scholar
  61. Shir, C. C., and R. Bornstein, 1977: Eddy exchange coefficients in numerical models of the planetary boundary layer. Bound. Layer Meteor., 11, 171 – 185.CrossRefGoogle Scholar
  62. Takano, K., 1983: Three-dimensional numerical modeling of the land and sea breezes and the urban heat island in the Kanto Plain. Submitted to Bound. Layer Meteor.Google Scholar
  63. Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscale model. Quart. J. R. Meteorol. Soc., 102, 277 – 296.ADSCrossRefGoogle Scholar
  64. Taylor, P. A., and Y. Delaze, 1971: A note on finite-difference schemes for the surface and planetary boundary layers. Bound. Layer Meteor., 2, 108 – 121.CrossRefGoogle Scholar
  65. Warner, T. T., R. Anthes and A. McNab, 1978: Numerical simulations with a three-dimensional mesoscale model. Mon. Wea. Rev., 106, 1079 – 1099.ADSCrossRefGoogle Scholar
  66. Yamada, T., 1980: Numerical simulation of mesoscale atmospheric circulations over the Lake Michigan. ASME Annual Meeting, Nov. 16–21, 1980, Chicago, 111.Google Scholar
  67. Yamamoto, G., 1975: Generalization of the KEYPS formula in diabolic conditions and related discussion on the critical Richardson number. J. Meteor. Soc. Japan, 53, 189 – 195.Google Scholar
  68. Yamamoto, G., and A. Shimanuki, 1966: Turbulent transfer in adiabatic conditions. J. Meteorol. Soc. Japan. 44, 301 – 307.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ulrike Pechinger
    • 1
    • 2
  1. 1.Department of MeteorologySan José State UniversitySan JoséUSA
  2. 2.Zentralanstalt fuer Meteorologie und GeodynamikViennaAustria

Personalised recommendations