Skip to main content

Experimental Searches for Slowly-Moving Magnetic Monopoles

  • Chapter
Electroweak Effects at High Energies
  • 131 Accesses

Abstract

The mythological Dirac monopole has been the object of experimental searches for nearly 50 years. In its modern context (since grand unified theories) it is massive and primordial. Experimentally, such an object should be slow (with solar or galactic escape velocity) and possibly very lightly ionizing. In the flurry of excitement surrounding B. Cabrera’s observations of last spring, 1 many groups attempted to observe or set limits on the flux of slow monopoles with “traditional” electronic particle detectors—plastic scintillators or proportional wire chambers. These experiments are the main subject of this talk, since older searches for relativistic monopoles, for monopoles at rest, etc., have recently been reviewed elsewhere.2,3 There have also been improvements in the theory of ionization by slowly-moving monopoles, and new looks at astrophysical limits. As a result, a new generation of electronic detectors is being developed which take advantage of the theoretical improvements and with sufficient aperture to improve upon astrophysical limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982); Flux limits updated by private communication, February 1983.

    Google Scholar 

  2. R.A. Carrigan, Jr., Nature 288, 348–350 (1980).

    Article  ADS  Google Scholar 

  3. M.J. Longo, Phys. Rev., D25, 2399–2405 (1982).

    ADS  Google Scholar 

  4. G. t’Hooft, Nucl. Phys. B79, 276 (1974).

    MathSciNet  ADS  Google Scholar 

  5. A. Polyakov, Pis’ma Zh. Eksp. Theor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].

    Google Scholar 

  6. Ya.B. Zeldovich and M. Yu. Khlopov, Phys. Lett. 79B, 239 (1978).

    ADS  Google Scholar 

  7. J.P. Preskill, Phys. Rev. Lett. 43, 1365–1368 (1979).

    Article  ADS  Google Scholar 

  8. A.H. Guth, Phys. Rev. D23, 347–356 (1981).

    Google Scholar 

  9. D. Sivers, Phys. Rev. D2, 2048–2054 (1970).

    Google Scholar 

  10. V.A. Rubakov, Zh. Eksp. Teor. Fiz. 33, 658 (1981) [JETP Lett. 33, 644 (1981)].

    Google Scholar 

  11. C.G. Callan, Princeton Univ. Preprints “Disappearing Dyons” and “Dyon-Fermion Dynamics” (1982); see also F.A. Wilczek, Phys. Rev. Lett. 48, 1146 (1982).

    Article  Google Scholar 

  12. F.A. Bais, J. Ellis, D.V. Nanopoulos, and K.A. Olive (CERN), CERN-TH-3383, Aug. 1982.

    Google Scholar 

  13. E.W. Kolb, S.A. Colgate, and J.A. Harvey, Phys. Rev. Lett. 49, 1373–1375 (1982).

    Google Scholar 

  14. S. Dimopoulos, J.R. Preskill, and F. Wilczek, Phys. Let. 119B, 320–322 (1983).

    Google Scholar 

  15. M.S. Turner, Nature 302, 804–806 (1983).

    Google Scholar 

  16. Q. Shafi, private communication 02/83.

    Google Scholar 

  17. S. Dimopoulos, S.L. Glashow, E.M. Purcell, and F. Wilczek, Nature 298, 824 (1983).

    Google Scholar 

  18. S. Dimopoulos, S.L. Glashow, E.M. Purcell, and F. Wilczek, Nature 298, 824 (1983).

    Google Scholar 

  19. . E.N. Parker, “Cosmical Magnetic Fields,”(Clarendon, Oxford, 1979 ).

    Google Scholar 

  20. M.S. Turner, E.N. Parker, and T.J. Bogdan, Phys. Rev. D26, 1296 (1982).

    Google Scholar 

  21. E.E. Salpeter, S. L. Shapiro and I. Wasserman, Phys. Rev. Lett. 49, 114–117 (1982).

    Google Scholar 

  22. C. Heiles, Ann. Rev. Astron. Astrophys. 14, 1–22 (1976).

    Google Scholar 

  23. J.R. Jokipii and E.N. Parker, Ap. J. 155, 799 (1969).

    Google Scholar 

  24. J.R. Jokipi, I. Lerche, and R. A. Schommer, Ap. J. Lett. 157, L119 (1969).

    Google Scholar 

  25. E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).

    Google Scholar 

  26. J. Lindhard, Mat. Fys. Medd. Dan. Vit. Selsk. 28, No. 8 (1954).

    Google Scholar 

  27. J. Lindhard and M. Scharff, Phys. Rev. 124, 128 (1961).

    Google Scholar 

  28. S.P. Ahlen and K. Kinoshita, Phys. Rev. D26, 2347 (1982).

    Google Scholar 

  29. S.H. Overbury, P.F. Dittner, S. Datz, and R.S. Thoe, Rad. Eff. 41, 219(1979). Also, see J.D. Garcia, Phys. Rev. A1, 280(1970) for a summary of experimental results of K-shell ionization by slow protons.

    Google Scholar 

  30. Y. Kazama, C.N. Yang and A.S. Goldhaber, Phys. Rev. D 15, 2287 (1977).

    Google Scholar 

  31. D. M. Ritson, SLAC-Pub-2950 (1982).

    Google Scholar 

  32. D.E. Groom, E.C. Loh, H.N. Nelson, and D.M. Ritson, Phys. Rev. Lett. 50, 573 (1983).

    Google Scholar 

  33. S.P. Ahlen and G. Tarle, Phys. Rev. D (Rapid Communications) 27, 688(1983).

    Google Scholar 

  34. S. D. Drell, N. M. Kroll, M. T. Mueller, S. J. Parke, and M.A. Ruderman, Phys. Rev. Lett. 50, 644–648 (1983).

    Google Scholar 

  35. C.f. for example W.P. Jesse, J. Chem. Phys. 41, 2060 (1964).

    Google Scholar 

  36. K. Kinoshita and P.B. Price, Phys. Rev. D24, 1707 (1981).

    Google Scholar 

  37. R. Bonarelli et al., Phys. Lett. 112B, 100–102 (1982), and preprint dated 10 May 1982.

    ADS  Google Scholar 

  38. T. Mashimo, K. Kawoge, and M. Koshiba, J. Phys. Soc. Japan 513065-3066 (1982), and undated preprint obtained May 1982.

    Google Scholar 

  39. E.N. Alexeyev, M.M. Boliev, A.E. Chudakov, B.A. Makoev, S.P. Mikheyev, and Yu.V. Sten’kin, Lett. Nuovo Cimento 35, 413 (1982), and private communication from A.E. Chudakov, February 1983.

    Google Scholar 

  40. J.K. Sokolowski and L.R. Sulak, Proc. 21st Conf. on High Energy Phys., Paris, 1982 (to be published), and L.R. Sulak, private communication 25 January 1983.

    Google Scholar 

  41. J.D. Ullman, Phys. Rev. Lett. 47, 289–292 (1981).

    Google Scholar 

  42. J. Bartelt et al., Phys. Rev. Lett. 50, 655–658 (1973).

    Article  ADS  Google Scholar 

  43. N.K. Mondal, private communication to E.C. Loh May 1982.

    Google Scholar 

  44. S. Higashi, S. Ozaki, T. Takahashi, and K. Tsuji, undated preprint obtained from S. Ozaki in January 1983.

    Google Scholar 

  45. K. Winter, private communication February 1983.

    Google Scholar 

  46. E.C. Loh, private communication December 1982.

    Google Scholar 

  47. M.L. Cherry et al., proposal dated 08/82, and M.L. Cherry, private communication April 1983.

    Google Scholar 

  48. G. Tarlg, private communication 29 April 1983.

    Google Scholar 

  49. P.M. McIntyre and R.C. Webb, proposal dated 01 February 1982.

    Google Scholar 

  50. E.C. Loh and D.M. Ritson, private communications Feb.-May 1983.

    Google Scholar 

  51. G. Masek, private communication and note dated 23 March 1983.

    Google Scholar 

  52. E.C. Loh, in Proc. of the Wingspread Workshop, Racine WI USA, (1982), to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Groom, D.E. (1985). Experimental Searches for Slowly-Moving Magnetic Monopoles. In: Newman, H.B. (eds) Electroweak Effects at High Energies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2451-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2451-5_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9489-4

  • Online ISBN: 978-1-4613-2451-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics