Skip to main content

A Possible Secondary Role for Thymine-Containing DNA Precursors

  • Chapter
Genetic Consequences of Nucleotide Pool Imbalance

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

Multienzyme complexes are involved in DNA replication and have been described in both uninfected [50] and T4-infected [59] Escherichia coli. These complexes comprise a variety of proteins including DNA binding, unwinding, priming, and polymerizing activities. The existence of multienzyme complexes for generating DNA precursors and/or channeling such DNA precursors has also been demonstrated in several systems [41, 52, 63, 65, 80, 96, 97] including T4-infected cells [4, 5, 20, 21, 38, 66, 71, 73, 74, 94, 95, 103, 106, 115, 116]. The presence of a DNA precursor complex greatly reduces the diffusion of sequentially synthesized reactants and results in an efficient funneling of DNA precursors to the replication apparatus [94]. The nature of the coupling between DNA precursor production and utilization during DNA synthesis has not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. I. Ahmad and A. Eisenstark, Thymidine sensitivity of certain strains of Escherichia coli K12, Molec. Gen. Genet., 172: 229–237 (1977).

    Article  Google Scholar 

  2. S. I. Ahmad, A. Atkinson, and A. Eisenstark, Isolation and characterization of a mutant of Escherichia coli K12 synthesizing DNA polymerase I and endonuclease I constitutively, J. Gen. Micro., 117: 419–422 (1980).

    CAS  Google Scholar 

  3. B. Alberts and R. Sternglanz, Recent excitement in the DNA replication problem, Nature, 269: 655–660 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. J. R. Allen, G. P. V. Reddy, G. W. Lasser, and C. K. Mathews, T4 ribonucleotide reductase, Physical and kinetic linkage to other enzymes of deoxyribonucleotide biosynthesis, J. Biol. Chem., 255: 7583–7588 (1980).

    PubMed  CAS  Google Scholar 

  5. J. R. Allen, G. W. Lasser, D. A. Goldman, G. W. Booth, and C. K. Mathews, T4 Phage deoxyribonucleotide synthesizing enzyme complex, J. Biol. Chem., 258: 5749–5753 (1983).

    Google Scholar 

  6. M. L. M. Anderson, Number and size distribution of the DNA chains in Escherichia coli, J. Mol. Biol., 118: 227–240 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. I. R. Beacham, K. Beacham, A. Zaritsky, and R. H. Prichard, Intracellular thymidine triphosphate concentrations in wild-type and in thymine requiring mutants of Escherichia coli 15 K12, J. Mol. Biol., 60: 75–86 (1971).

    Article  PubMed  CAS  Google Scholar 

  8. M. T. Behme, G. D. Zilley, and K. Ebisuzaki, Post infection control by bacteriophage T4 of Escherichia coli rec BC nuclease activity, J. Virol., 18: 20–25 (1976).

    PubMed  CAS  Google Scholar 

  9. C. Bernstein, H. Bernstein, S. Mufti, and B. Strom, Stimulation of mutation in phage T4 by lesions in gene 32 and thymidine imbalance, Mutat. Res., 16: 113–119 (1972).

    CAS  Google Scholar 

  10. C. Bernstein and S. S. Wallace, DNA repair, in: “Bacteriophage T4.” C. K. Mathews, E. Kutter, G. Mosig, and P. B. Berget, eds.), ASM Press, Washington (1983).

    Google Scholar 

  11. O. Berglund and B. M. Sjoberg, Effect of hydroxyurea on T4 ribonucleotide reductase, J. Biol. Chem., 245: 253–254 (1979).

    Google Scholar 

  12. R. E. Bird, J. Lourn, J. Mastuscelli, and L. Caro, Origin and sequence of chromosome replication in Escherichia coli, J. Mol. Biol., 70: 549–566 (1972).

    Article  PubMed  CAS  Google Scholar 

  13. C. Biswas, J. Hardy, and W. S. Beck, Release of repressor control of ribonucleotide reductase by thymine starvation, J. Biol. Chem., 240: 3631–3640 (1965).

    PubMed  CAS  Google Scholar 

  14. M. O. Bradly and W. A. Sharkey, Mutageneicity of thymidine to cultured Chinese hamster cells, Nature, 274: 607–608 (1978).

    Article  Google Scholar 

  15. S. Bresler, M. Mosevitsky, and L. Vyacheslavov, Complete mutagenesis in a bacterial population induced by thymine starvation on solid media, Nature, 225: 746–766 (1970).

    Article  Google Scholar 

  16. N. Brewin, Origin and fate of the small DNA chains synthesized in bacteria after thymine deprivation, J. Mol. Biol., 111: 343–352 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. N. Brewin and J. Cairns, State of the DNA replication fork during thymine deprivation of Escherichia coli, as observed by pulse-labeling with 3H thymine, J. Mol. Biol., 111: 353–363 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. J. Chao, M. Leach, and J. Karam, In vivo functional interaction between DNA polymerase and dCMP hydroxymethylase of bacteriophage T4 VI. Biological functions of gene 42, J. Virol., 24: 557–563 (1977).

    PubMed  CAS  Google Scholar 

  19. C.-S. Chiu and R. G. Greenberg, Evidence for a possible direct role of dCMP hydroxymethylase in T4 phage DNA synthesis, Cold Spring Harbor Symp. Quant. Biol., 33: 351–359 (1968).

    Article  CAS  Google Scholar 

  20. C.-S. Chiu, T. Reuttinger, J. B. Flanegan, and R. G. Greenberg, Role of deoxycytidylate deaminase in deoxyribonucleotide synthesis in bacteriophage T4 DNA replication, J. Biol. Chem., 252: 8603–8608 (1977).

    PubMed  CAS  Google Scholar 

  21. C.-S. Chiu, K. S. Cook, and R. G. Greenberg, Characteristics of a bacteriophage T4-induced complex synthesizing deoxyribo-nucleotides, J. Biol. Chem., 257: 15087–15097 (1982).

    PubMed  CAS  Google Scholar 

  22. S. S. Cohen and H. P. Barner, Enzymatic adaptation in thymine requiring strain of Escherichia coli, J. Bact., 69: 59–66 (1955).

    PubMed  CAS  Google Scholar 

  23. L. V. Crawford, Thymine metabolism in strains of Escherichia coli, Biochem. et Biophys. Act., 30: 428–429 (1958).

    CAS  Google Scholar 

  24. R. P. Cunningham and H. Berger, Mutations affecting genetic recombination in bacteriophage T4. II. Pathway Analysis, Virol., 80: 67–82 (1977).

    Article  CAS  Google Scholar 

  25. M. Cupido, S. Grimbergen, and B. De Groot, Participation of bacteriophage T4 gene 41 in replication repair, Mutat. Res., 70: 131–138 (1980).

    CAS  Google Scholar 

  26. R. L. Davidson and E. R. Kaufman, Bromodeoxyuridine mutagenesis in mammalian cells is stimulated by thymidine and suppressed by deoxycytidine, Nature, 276: 722–723 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. M. L. De Pamphilis, and P. M. Wassarman, Replication of eukaryo-tic chromosomes: A close-up of the replication fork, Ann. Rev. Biochem., 49: 627–666 (1980).

    Article  Google Scholar 

  28. G. E. Degnen and E. Cox, Conditional mutator gene in Escherichia coli: Isolation, mapping and effector studies, J. Bact., 117: 477–487 (1974).

    PubMed  CAS  Google Scholar 

  29. D. T. Denhardt and C. Miyamoto, Characteristics of the nascent and non-nascent small DNA molecules found in Escherichia coli, J. Mol. Biol., 165: 419–442 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. J. K. DeVriesandS. S. Wallace, Reversion of bacteriophage T4 rll mutants by high levels of pyrimidine deoxyribonucleosides, Mol. Gen. Genet., 186: 101–105 (1982).

    Article  Google Scholar 

  31. A. T. Diaz and R. Werner, Mechanism of DNA chain growth, J. Mol. Biol., 95: 63–70 (1975).

    Article  PubMed  CAS  Google Scholar 

  32. A. T. Diaz, D. Wiener, and R. Werner, Synthesis of small polynucleotide chains in thymine depleted bacteria, J. Mol. Biol., 95: 45–61 (1975).

    Article  PubMed  CAS  Google Scholar 

  33. B. K. Duncan, P. A. Rockstroh, and H. R. Warner, Escherichia coli K12 mutants deficient in uracil-DNA glycosylase, J. Bacteriol!, 134: 1039–1045 (1978).

    PubMed  CAS  Google Scholar 

  34. T. Edlund, P. Gustafsson, and H. Wolf-Katz, Effect of thymine concentration on the mode of chromosomal replication in Escherichia coli K12, J. Mol. Biol., 108: 295–303 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. S. Eriksson, B. Sjoberg, S. Hahne, and 0. Karlstrom, Ribonucleoside diphosphate reductase from Escherichia coli. A. immunological assay and a novel purification from an overproducing strain lysogenic for phage A. dnrd, J. Biol. Chem., 252: 6132–6138 (1977).

    CAS  Google Scholar 

  36. J. L. Farmer and F. J. Rothman, Transformable thymine requiring mutant of Bacillus subtilis, J. Bact., 89: 262–263 (1965).

    PubMed  CAS  Google Scholar 

  37. D. Filpula and J. A. Fuchs, Regulation of ribonucleoside diphosphate reductase synthesis in Escherichia coli: Increased enzyme enzyme synthesis as a result of inhibition of deoxyribonucleic acid synthesis, J. Bact., 130: 107–113 (1977).

    PubMed  CAS  Google Scholar 

  38. J. B. Flanegan and G. R. Greenberg, Regulation of deoxyribonucleotide biosynthesis during in vivo bacteriophage T4 DNA replication. Intrinsic control of synthesis of thymine and 5-hy-droxymethylcytosine deoxyribonucleotides at precise ratio found in DNA, J. Biol. Chem., 252: 3019–3027 (1977).

    PubMed  CAS  Google Scholar 

  39. J. A. Fuchs, 0. H. Karlstrom, R. H. Warner, and P. Reichard, Defective gene product in dnaF mutant of Escherichia coli, Nature New Biol., 238: 69–71 (1972).

    CAS  Google Scholar 

  40. A. R. Grivell and J. F. Jackson, Thymidine kinase: Evidence for its absence from Neurospora crassa and some other microorganisms, and the relevance of this to specific labeling of deoxyribonucleic acid, J. Gen. Microbiol., 54: 307–317 (1968).

    PubMed  CAS  Google Scholar 

  41. M. Greene and W. Firschein, Role of deoxyribonucleic acid ligase in a deoxyribonucleic acid membrane fraction extracted from pneumonocci, J. Bact., 126: 777–784 (1976).

    PubMed  CAS  Google Scholar 

  42. M. V. Hamlett and H. Berger, Mutations altering genetic recombination and repair of DNA in bacteriophage T4, Virology, 63: 539–562 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. W. J. Harris, The occurrence of two types of synthesis of deoxyribonucleic acid during normal growth of Bacillus subtilis, Biochem. J., 135: 315–325 (1973).

    PubMed  CAS  Google Scholar 

  44. D. Huszar and S. Bacchetti, Is ribonucleotide reductase the transforming function of herpes simplex virus 2, Nature, 302: 76–79 (1983).

    Article  PubMed  CAS  Google Scholar 

  45. M. K. Jacobson and K. G. Lark, DNA replication in Escherichia coli: evidence for two classes of small deoxyribonucleotide chains, J. Mol. Biol., 73: 371–376 (1973).

    Article  PubMed  CAS  Google Scholar 

  46. J. H. Kim, I. H. Kim, and M. L. Eidinoff, Cell viability and nucleic acid metabolism after exposure of HeLa cells to excess thymidine and deoxyadenosine, Biochem. Pharmacol., 14: 1821–1829 (1975).

    Google Scholar 

  47. T. Kogoma and K. G. Lark, DNA replication in Escherichia coli: replication in the absence of protein synthesis after replication inhibition, J. Mol. Biol., 52: 143–164 (1970).

    Article  PubMed  CAS  Google Scholar 

  48. T. Kogoma, A. novel Escherichia coli mutant capable of DNA replication in the absence of protein synthesis*, J. Mol. Biol., 121: 55–69 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. T. Kogoma, T. A. Torrey, and M. J. Connaughton, Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function, Mol. Gen. Genet., 176: 1–9 (1979).

    Article  CAS  Google Scholar 

  50. A. Kornberg, DNA Replication, W. H. Freeman and Co., San Francisco (1980).

    Google Scholar 

  51. Y. Kurosawa and R. Okazaki, Mechanism of DNA chain growth XIII. Evidence for discontinuous replication of both strands of P2 phage DNA, J. Mol. Biol., 94, 229–241 (1975).

    Article  PubMed  CAS  Google Scholar 

  52. D. Kuebbing and R. Werner, A. model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells, Proc. Natl. A.ad. Sci., 72: 3333–3336 (1975).

    Article  CAS  Google Scholar 

  53. B. A. Kunz, Genetic effects of deoxyribonucleotide pool imbalances, Environ. Mut., 4: 695–725 (1982).

    CAS  Google Scholar 

  54. T. J. Kwoh, P. T. Chan, and M. H. Patrick, Examination of newly synthesized DNA in Escherichia coli, Mol. Gen. Genet., 173: 85–93 (1979).

    Article  CAS  Google Scholar 

  55. S. S. Lee, B. C. Giovanella, and J. S. Stehlin, Selective lethal effect of thymidine on human and mouse tumor cells, J. Cell Physiol., 92: 401–405 (1977).

    Article  PubMed  CAS  Google Scholar 

  56. L. A. Lewis, E. Mengheri, and M. Estaban, Induction of an antiviral response by interferon requires thymidine kinase, Proc. Natl. Acad. Sci., 80: 26–30 (1983).

    Article  PubMed  CAS  Google Scholar 

  57. J. Lichtenstein, H. D. Barner, S. S. Cohen, The metabolism of exogenously supplied nucleotides by Escherichia coli, J. Biol. Chem., 235: 457–465 (1960).

    PubMed  CAS  Google Scholar 

  58. J. Little, Control of the SOS regulatory system by the level of recA protease, Biochemie, 64: 585–589 (1982).

    Article  CAS  Google Scholar 

  59. C.-C. Liu, R. L. Burke, U. Hibner, J. Barry, and B. M. Alberts, Probing DNA replication mechanisms with the T4 bacteriphage in vitro system, Cold Spring Harbor Sym. Quant. Biol., 43: 469–487 (1978).

    Article  Google Scholar 

  60. L. A. Loeb and T. A. Kunkel, Fidelity of DNA synthesis, Ann. Rev. Biochem., 52: 429–457 (1982).

    Article  Google Scholar 

  61. J. M. Lourn and R. E. Bird, Size distribution and molecular polarity of newly replicated DNA in Escherichia coli, Proc. Natl. Acad. Sci., 71: 329–333 (1974).

    Article  Google Scholar 

  62. A. Luder and G. Mosig, Two alternative mechanisms for initiation of DNA replication forks in bacteriophage T4: Priming by RNA polymerase and by recombination, Proc. Natl. Acad. Sci., 79: 1101–1105 (1982).

    Article  PubMed  CAS  Google Scholar 

  63. C. A. Lunn and V. Pigiet, Characterization of a high activity form of ribonucleotide diphosphate reductase from Escherichia coli, J. Biol. Chem., 254: 5008–5014 (1979).

    PubMed  CAS  Google Scholar 

  64. C. Manoil, N. Sinha, and B. Alberts, Intracellular DNA-protein complexes from bacteriophage T4-infected cells isolated by a rapid two-step procedure, J. Biol. Chem., 252: 2734–2741 (1977).

    PubMed  CAS  Google Scholar 

  65. J. D. Manwaring and J. A. Fuchs, Relationship between deoxy-ribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in nrdA mutant of Escherichia coli, J. Bact., 138: 245–248 (1979).

    PubMed  CAS  Google Scholar 

  66. C. K. Mathews, T. W. North, and G. P. V. Reddy, Multienzyme complexes in DNA precursor biosynthesis, Adv. Enzyme Regul., 17: 133–156 (1979).

    Article  CAS  Google Scholar 

  67. M. Matthes, D. T. Denhardt, The mechanism of replication of ϕX174 DNA XVI. Evidence that the ϕX174 viral strand is synthesized discontinuously, J. Mol. Biol., 136: 45–63 (1980).

    Article  PubMed  CAS  Google Scholar 

  68. D. McCarthy, C. Minner, H. Bernstein, and C. Bernstein, DNA elongation rates and growing point distributions of wild-type phage T4 and a DNA-delay amber mutant, J. Mol. Biol., 106: 963–981 (1976).

    Article  PubMed  CAS  Google Scholar 

  69. R. J. Melamede and S. S. Wallace, The effect of exogenous deoxyribonucleosides on thymidine incorporation in T4-infected cells, FEBS Let., 87: 12–15 (1978).

    Article  CAS  Google Scholar 

  70. R. J. Melamede and S. S. Wallace, The effect of exogenous deoxyribonucleosides on thymidine incorporation in T4-infected cells, FEBS Let., 87:12–15 (1978).

    Google Scholar 

  71. R. J. Melamede and S. S. Wallace, Properties of the nonlethal recombinational repair deficient mutants of bacteriophage T4 III. DNA replicative intermediates and T4w, Mol. Gen. Genet., 177: 501–509 (1980).

    Article  PubMed  CAS  Google Scholar 

  72. R. J. Melamede and S. S. Wallace, Phenotypic differences among the alleles of the T4 recombination defective mutants, Mol. Gen. Genet., 179: 327–330 (1980).

    Article  CAS  Google Scholar 

  73. R. J. Melamede and S. S. Wallace, Incorporation of thymine-containing DNA precursors in wild-type and mutant T4-infected plasmolyzed cells, Mol. Gen. Genet., 191: 382–388 (1983).

    Article  CAS  Google Scholar 

  74. R. J. Melamede and S. S. Wallace, Incorporation of thymine-containing DNA precursors in plasmolyzed cells infected by the T4 non-lethal recombination defective mutants, Mol. Gen. Genet., 191: 389–392 (1983).

    Article  CAS  Google Scholar 

  75. T. Minagawa, A. Murakami, Y. Ryo, and W. Yamagishi, Structural features of very fast sedimenting DNA formed by gene 49 defective T4, J. Mol. Biol., 126: 183–193 (1983).

    CAS  Google Scholar 

  76. ribonucleotides at the 5T termini of some DNA molecules isolated from Escherixhi J-Mol. Biol., 116: 681–707 (1977).

    Google Scholar 

  77. Nakayama and P. Hanawalt, Sedimentation analysis of deoxyribonucleic acid from thymine starved Escherichia coli, J. Bact., 121: 537–547 (1975).

    Google Scholar 

  78. J. Neuhard and E. Thomasen, Turnover of deoxyribonucleoside triphosphates in Escherichia coli 15T during thymine starvation, Eur. J. Biochem., 20: 36–43 (1971).

    Article  PubMed  CAS  Google Scholar 

  79. G. Nicolis and J. Prigogine, Self-organization in nonequilibrium systems. From Dissipative Structures to Order through Fluctuations, John Wiley and Sons, New York (1977).

    Google Scholar 

  80. H. Noguchi, G. P. V. Reddy, and A. B. Pardee, Rapid incorporation of label from ribonucleotide diphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei, Cell, 32: 443–451 (1983).

    Article  PubMed  CAS  Google Scholar 

  81. T. Ogawa and T. Okazaki, Discontinuous DNA replication, Ann. Rev. Biochem., 49: 421–457 (1980).

    Article  PubMed  CAS  Google Scholar 

  82. R. Okazaki, T. Okazaki, K. Sakabe, K. Sugimoto, R. Kainuma, A. Sugino, and N. Iwatsuki, In vivo mechanisms of DNA chain growth, Cold Spring Harbor Symp. Quant. Biol., 33: 129–143 (1968).

    Article  Google Scholar 

  83. R. Okazaki, K. Sugimoto, T. Okazaki, Y. Imae, and A. Sugino, Mechanism of DNA chain growth III. Equal annealing of T4 nascent short DNA chains with the separated complementary strands of the phage DNA, Nature, 228: 223–226 (1970).

    Article  PubMed  CAS  Google Scholar 

  84. R. Okazaki, M. Arisnwa, and A. Sugino, Slow joining of newly replicated DNA chains in DNA polymerase I deficient Escherichia coli mutants, Proc. Natl. Acad. Sci., 68: 2954–2957 (1971).

    Article  PubMed  CAS  Google Scholar 

  85. B. M. Olivera and F. Bonhoeffer, Discontinuous DNA replication in vitro: I two distinct size classes of intermediates, Nature New Biol., 240: 233–235 (1972).

    Article  PubMed  CAS  Google Scholar 

  86. B. M. Olivera, DNA intermediates at the Escherichia coli replication fork: Effect of dUTP, Proc. Natl. Acad. Sci. USA, 75: 238–242 (1978).

    Article  PubMed  CAS  Google Scholar 

  87. A. R. Peterson, J. R. Landolph, H. Peterson, and C. Heidelberger, Mutagenesis of Chinese hamster cells is facilitated by thymidine and deoxycytidine, Nature, 276: 508–510 (1978).

    Article  PubMed  CAS  Google Scholar 

  88. E. M. Phizicky and J. W. Roberts, Induction of SOS functions: Regulation of proteolytic activity of E. coli recA protein by interaction with DNA and nucleoside triphosphate, Cell, 25: 259–267 (1981).

    Article  PubMed  CAS  Google Scholar 

  89. I. Prigogine, From Being to Becoming, Time and Complexity in the Physical Sciences, W. H. Freeman and Co., San Franscisco (1980).

    Google Scholar 

  90. K. H. Pritchard and K. G. Lark, Induction of replication by thymine starvation at the chromosome origin in Escherichia coli, J. Mol. Biol., 9: 288–307 (1964).

    Article  PubMed  CAS  Google Scholar 

  91. M. Radman, Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, in: “Molecular and Environmental Aspects of Mutagenesis” ( L. Prakash, F. Sherman, M. Miller, C. Lawrence, and H. W. Tabor, eds.), Charles C. Thomas, Publisher, Springfield, Illinois (1974).

    Google Scholar 

  92. M. Raggenbass and L. Caro, Intermediates of chromosomal DNA replication in Escherichia coli, J. Mol. Biol., 159: 273–301 (1982).

    Article  PubMed  CAS  Google Scholar 

  93. W. E. Razzel and P. Casshyap, Substrate specificity and induction of thymidine phosphorylase in Escherichia coli, J. Biol. Chem., 239: 1789–1793 (1964).

    Google Scholar 

  94. G. P. V. Reddy, A. Singh, M. E. Stafford, C. K. Mathews, Enzyme associations in T4 phage DNA precursor synthesis, Proc. Natl. Acad. Sci. USA, 74: 3152–3156 (1977).

    Google Scholar 

  95. G. P. V. Reddy and C. K. Mathews, Functional compartmentation of DNA precursors in T4 phage-infected bacteria, J. Biol. Chem., 253: 346–3467 (1978).

    Google Scholar 

  96. G. P. V. Reddy and A. B. Pardee, Multienzyme complex for metabolic channeling in mammalian DNA replication, Proc. Natl. Acad. Sci., 77: 3312–3316 (1980).

    Article  CAS  Google Scholar 

  97. G. P. V. Reddy and A. B. Pardee, Coupled ribonucleoside diphosphate reduction, channeling and incorporation into DNA of mammalian cells, J. Biol. Chem., 257: 12526–12531 (1982).

    CAS  Google Scholar 

  98. C. W. Roberts and P. L. Moreau, A brief consideration of the SOS inducing signal, Biochemie, 64: 805–807 (1982).

    Article  CAS  Google Scholar 

  99. E. Schandl, Oligodeoxyribonucleotides from pulse labeled bacterial cells, Biochem. Biophys. Acta, 262: 420–430 (1972).

    CAS  Google Scholar 

  100. D. W. Siegmann and R. Werner, Origin and characterization of short DNA chains in Escherichia coli, Eur. J. Biochem., 120; 497–509 (1981).

    Article  PubMed  CAS  Google Scholar 

  101. D. W. Siegmann and R. Werner, Novel structure at 5’-ends of nascent DNA chains, Proc. Natl. Acad. Sci., 73: 3438–3442 (1976).

    Article  PubMed  CAS  Google Scholar 

  102. O. Smithies, The control of globin and other eukaryotic genes, J. Cell. Physiol. Suppl. 1: 137–143 (1982).

    Article  PubMed  CAS  Google Scholar 

  103. M. F. Stafford, G. P. V. Reddy, C. K. Mathews, Further studies on bacteriophage T4 DNA synthesis in sucrose-plasmolyzed cells, J. Virol., 23: 53–60 (1977).

    PubMed  CAS  Google Scholar 

  104. R. Sternglanz, H. F. Wang, and J. D. Donegan, Evidence that both growing DNA chains at a replication fork are synthesized discontinuously, Biochem., 15: 1838–1843 (1976).

    Article  CAS  Google Scholar 

  105. F. Tamanoi and T. Okazaki, Uracil incorporation into nascent DNA of thymine-requiring mutant of Bacillus subtilis 168, Proc. Natl. Acad. Sci. USA, 75: 2195–2199 (1978).

    Article  PubMed  CAS  Google Scholar 

  106. P. K. Tomich, C. S. Chiu, M. G. Wovcha, and G. R. Greenberg, Evidence for a complex regulating the in vivo activities of early enzymes induced by bacteriophage T4, J. Biol. Chem., 249: 7613–7632 (1974).

    PubMed  CAS  Google Scholar 

  107. G.-K. Tye, P.-O. Nyman, I. R. Lehman, S. Hochhauser, and B. Weiss, Transient accumulation of Okazaki fragments as a result of uracil incorporation into nascent DNA, Proc. Natl. Acad. Sci. USA, 74: 154–157 (1977).

    Article  PubMed  CAS  Google Scholar 

  108. M. S. Valenzuela and R. B. Inman, Direction of bacteriophage DNA replication in a thymine requiring Escherichia coli K-12 strain. Effect of thymidine concentration, Nucleic Acids Res., 9: 6975–6984 (1981).

    Article  PubMed  CAS  Google Scholar 

  109. M. S. Valenzuela and R. B. Inman, Multiply branched replica-tive intermediates in E. coli and bacteriophage A, Mol. Gen. Genet., 184: 450–456 (1981).

    Article  CAS  Google Scholar 

  110. H. F. Wang and R. Sternglanz, Thymine-labeled deoxyoligonu-cleotide involved in DNA chain growth in Bacillus subtilis, Nature, 248 147–150 (1974).

    Article  PubMed  CAS  Google Scholar 

  111. R. Werner, Mechanism of DNA replication, Nature, 230: 570–572 (1971).

    Article  PubMed  CAS  Google Scholar 

  112. R. Werner, Nature of DNA precursors, Nature New Biol., 233: 99–103 (1971).

    PubMed  CAS  Google Scholar 

  113. E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40: 869–907 (1976).

    CAS  Google Scholar 

  114. E. M. Witkin, From Gainsville to Toulouse: the evolution of a model, Biochemie, 64: 549–555 (1982).

    Article  CAS  Google Scholar 

  115. O. Wirak and G. R. Greenberg, Role of bacteriophage T4 DNA-delay gene products in deoxyribonucleotide synthesis, J. Biol. Chem., 255: 1896–1904 (1980).

    Google Scholar 

  116. M. G. Wovcha, C.-S. Chiu, P. K. Tomich, and G. R. Greenberg, Replicative bacteriophage DNA synthesis in plasmolyzed T4-infected cells: evidence for two independent pathways to DNA, J. Virol., 20: 142–156 (1976).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Melamede, R.J., Wallace, S.S. (1985). A Possible Secondary Role for Thymine-Containing DNA Precursors. In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics