Enzymatic Channeling of DNA Precursors

  • Christopher K. Mathews
Part of the Basic Life Sciences book series (BLSC, volume 31)


The idea that metabolic intermediates can be channeled through the action of organized multienzyme complexes is well established in cellular biochemistry. However, application of these ideas to reaction pathways in nucleic acid biosynthesis represents a quite recent development. In part this is because most of the enzymes of nucleic acid metabolism are readily isolated in soluble form, whereas the well-understood complexes, such as pyruvate dehydrogenase or the mitochondrial electron transport chain, consist either of tightly associated enzymes or proteins firmly anchored in a membrane. It is noteworthy that a conference volume published in 1978 [49], “Microenvironments and Metabolic Compartmentation,” made no mention of DNA precursor biosynthesis.


Ribonucleotide Reductase Replication Site Functional Compartmentation dNTP Pool Spontaneous Mutation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Allen, G. W. Lasser, D. A. Goldman, J. W. Booth, and C. K. Mathews, T4 Phage deoxyribonucleotide-synthesizing enzyme complex, J. Biol. Chem., 258: 5746 – 5753 (1983).PubMedGoogle Scholar
  2. 2.
    J. R. Allen, G. P. V. Reddy, G. W. Lasser, and C. K. Mathews, T4 Ribonucleotide reductase. Physical and kinetic linkage to other enzymes of deoxyribonucleotide biosynthesis, J. Biol. Chem., 255: 7583 – 7588 (1980).PubMedGoogle Scholar
  3. 3.
    D. Ayusawa, K. Shimizu, H. Koyama, K. Takeishi, and T. Seno, Unusual aspects of human thymidylate synthase in mouse cells introduced by DNA-mediated gene transfer, J. Biol. Chem., 258: 48 – 53 (1983).PubMedGoogle Scholar
  4. 4.
    E. Baril, B. Baril, H. Elford, and R. B. Luftig, Aggregated mammalian enzymes in deoxyribonucleotide and DNA replication, in: “Mechanism and Regulation of DNA Replication” (A. R. Kolber and M. Kohiyama, eds.), pp. 275 – 291, Plenum Press, New York (1973).Google Scholar
  5. 5.
    N. A. Berger and E. S. Johnson, DNA synthesis in permeabilized mouse L cells, Biochim. Biophys. Acta, 425: 1 – 17 (1976).PubMedGoogle Scholar
  6. 6.
    R. K. Bestwick, G. L. Moffett, and C. K. Mathews, Selective expansion of mitochondrial nucleotide pools in antimetabolite- treated HeLa cells, J. Biol. Chem., 257: 9300 – 9304 (1982).PubMedGoogle Scholar
  7. 7.
    J. Chao, M. Leach, and J. Karam, In vivofunctional interaction between DNA polymerase and dCMP hydroxymethylase of bacterophage T4, J. Virol., 24: 557 – 563 (1977).PubMedGoogle Scholar
  8. 8.
    M. S. Chen, J. Walker, and W. H. Prusoff, Kinetic studies of herpes simplex virus type 1-encoded thymidine and thymidylate kinase, a multifunctional enzyme, J. Biol. Chem., 254: 10747 – 10753 (1979).PubMedGoogle Scholar
  9. 9.
    C.-S. Chiu, K. S. Cook, and G. R. Greenberg, Characteristics of a bacteriophage T4-induced complex synthesizing deoxyribonucleotides, J. Biol. Chem., 257: 15087 – 15097 (1982).PubMedGoogle Scholar
  10. 10.
    C.-S. Chiu and G. R. Greenberg, Mutagenic effects of temperature-sensitive mutants of gene 42 of bacteriophage T4, J. Virol., 12: 199 – 201 (1973).PubMedGoogle Scholar
  11. 11.
    C.-S. Chiu, T. Ruettinger, J. B. Flanegan, and G. Greenberg, Role of deoxycytidylate deaminase in deoxyribonucleotide synthesis in bacteriophage T4 DNA replication, J. Biol. Chem., 252: 8603 – 8608 (1977).PubMedGoogle Scholar
  12. 12.
    R. I. Christopherson and M. E. Jones, The overall synthesis of L-5, β-dihydroorotate by multienzymatic protein pyrol-3from hamster cells, J. Biol. Chem., 255: 11381 – 11395 (1980).PubMedGoogle Scholar
  13. 13.
    J. C. Drach, M. A. Thomas, J. W. Barnett, S. H. Smith, and C. Shipman, Jr., Tritiated thymidine incorporation does not measure DNA synthesis in ribavarin-treated human cells, Science, 212: 549 – 551 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Eliasson and P. Reichard, Replication of polyoma DNA in isolated nuclei, J. Mol. Biol., 129: 393 – 409 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Eriksson, Ribonucleotide reductase from E. coli: Demonstration of a highly active form of the enzyme, Eur. J. Biochem., 56: 289 – 294 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    A. R. Fersht, Fidelity of replication of phage ∅X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation, Proc. Natl. Acad. Sci. USA, 76: 4946 – 4950 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    J. B. Flanegan, C.-S. Chiu, and G. R. Greenberg, Inhibitory effect of agents altering the structure of DNA on the synthesis of pyrimidine deoxyribonucleotides in bacteriophage T4 DNA replication, J. Biol. Chem., 252: 6031 – 6037 (1977).PubMedGoogle Scholar
  18. 18.
    J. B. Flanegan and G. R. Greenberg, Regulation of deoxyribonucleotide biosynthesis during in vivobacteriophage T4 DNA replication, J. Biol. Chem., 252: 3019 – 3027 (1977).PubMedGoogle Scholar
  19. 19.
    B. Francke, Cell-free synthesis of herpes simplex virus DNA: Conditions for optimal synthesis, Biochemistry, 16: 5655 – 5664 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    J. M. K. Fraser and J. A. Huberman, In vitroHeLa cell DNA synthesis similarity to in vivoreplication, J. Mol. Biol., 117: 249 – 272 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Fridland, DNA precursors in eukaryotic cells, Nature, 243: 105 – 107 (1973).Google Scholar
  22. 22.
    A. B. Fulton, How crowded is the cytoplasm? Cell, 30: 345 – 347 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Imae and R. Okazaki, Replication of bacteriophage T4 DNA in vitro, J. Virol., 19: 435 – 445. (1976).PubMedGoogle Scholar
  24. 24.
    D. E. Kizer and B. A. Howell, Evidence that incorporation of inorganic [32P]phosphate into DNA of regenerating rat liver is stimulated 6 h earlier than similar incorporation of labeled thymidine, Biochim. Biophys. Acta, 561: 276 – 293 (1979).Google Scholar
  25. 25.
    A. Koch-Schmidt, B. Mattiasson, and K. Mosbach, Aspects on microenvironmental compartmentation, Eur. J. Biochem., 81: 71 – 78 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Romberg, DNA Replication, W. H. Freeman and Co., San Francisco (1980).Google Scholar
  27. 27.
    D. Kuebbing and R. Werner, A model for compartmentation of de novoand salvage thymidine nucleotide pools in mammalian cells, Proc. Natl. Acad. Sci. USA, 72: 3333 – 3336 (1975).PubMedCrossRefGoogle Scholar
  28. 28.
    C. A. Lunn and V. Pigiet, Characterization of a high activity form of ribonucleoside diphosphate reductase from E. coli, J. Biol. Chem., 254: 5008 – 5014 (1979).PubMedGoogle Scholar
  29. 29.
    J. D. Manwaring and J. A. Fuchs, Relationship between deoxy-ribonucleoside triphosphate pools and DNA synthesis in an nrdAmutant of E. coli, J. Bacteriol., 138: 245 – 248 (1979).PubMedGoogle Scholar
  30. 30.
    C. K. Mathews, Giant pools of DNA precursors in sea urchin eggs, Exptl. Cell Res., 92: 47 – 56 (1975).PubMedCrossRefGoogle Scholar
  31. 31.
    C. K. Mathews, Biochemistry of DNA-defective mutants of bacteriophage T4. Thymine nucleotide pool dynamics, Arch. Biochem. Biophys., 172: 178 – 187 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    C. K. Mathews, T. W. North, and G. P. V. Reddy, Multienzyme complexes in DNA precursor biosynthesis, Adv. Enz. Regul., 17: 133 – 156 (1979).CrossRefGoogle Scholar
  33. 33.
    C. K. Mathews and N. K. Sinha, Are DNA precursors concentrated at replication sites?, Proc. Natl. Acad. Sci. USA, 79: 302 – 306 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    M. Meuth, Sensitivity of a mutator gene in Chinese hamster ovary cells to deoxyribonucleoside triphosphate pool alterations, Mol. Cell. Biol., 1: 652 – 660 (1981).PubMedGoogle Scholar
  35. 35.
    R. C. Miller, D. M. Taylor, K. MacKay, and H. W. Smith, Replication of T4 DNA in E. colitreated with toluene, J. Virol., 12: 1195 – 1203 (1973).PubMedGoogle Scholar
  36. 36.
    H. Noguchi, G. P. V. Reddy, and A. B. Pardee, Rapid incorporation of label from ribonucleoside diphosphates into DNA by a cell-free high molecular weight fraction from animal cell nuclei, Cell, 32: 443 – 451 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    T. W. North, M. E. Stafford, and C. K. Mathews, Biochemistry of DNA-defective mutants of bacteriophage T4. VI. Biological functions of gene 42, J. Virol., 17: 973 – 982 (1976).PubMedGoogle Scholar
  38. 38.
    M. L. Pato, Alterations of deoxyribonucleoside triphosphate pools in E. coli: Effects on DNA replication and evidence for compartmentation, J. Bacteriol., 140: 518 – 524 (1979).PubMedGoogle Scholar
  39. 39.
    J. L. Paukert, L. D. Straus, and J. C. Rabinowitz, Formyl-methenyl-methylenetetrahydrofolate synthetase-(combined), J. Biol. Chem., 251: 5104 – 5111 (1976).PubMedGoogle Scholar
  40. 40.
    G. P. V. Reddy and C. K. Mathews, Functional compartmentation of DNA precursors in T4 phage-infected bacteria, J. Biol. Chem., 253: 3461 – 3467 (1978).PubMedGoogle Scholar
  41. 41.
    G. P. V. Reddy and A. B. Pardee, Multienzyme complex for metabolic channeling in mammalian DNA replication, Proc. Natl. Acad. Sci. USA, 77: 3312 – 3316 (1980).CrossRefGoogle Scholar
  42. 42.
    G. P. V. Reddy and A. B. Pardee, Coupled ribonucleoside diphosphate reduction, channeling, and incorporation into DNA of mammalian cells, J. Biol. Chem., 257: 12526 – 12531 (1982).Google Scholar
  43. 43.
    G. P. V. Reddy, A. Singh, M. E. Stafford, and C. K. Mathews, Enzyme associations in T4 phage DNA precursor synthesis, Proc. Natl. Acad. Sci. USA, 74: 3152–3156 (1977)PubMedCrossRefGoogle Scholar
  44. 44.
    W. Rode, K. J. Scanlon, B. A. Moroson, and J. R. Bertino, Regulation of thymidylate synthetase in mouse leukemia cells (L1210), J. Biol. Chem., 255: 1305 – 1311 (1980).PubMedGoogle Scholar
  45. 45.
    F. E. Scott and D. R. Forsdyke, Isotope-dilution analysis of the effects of deoxyguanosine and deoxyadenosine on the incorporation of thymidine and deoxycytidine by hydroxyureatreated thymus cells, Biochem. J., 190: 721 – 730 (1980).PubMedGoogle Scholar
  46. 46.
    L. Skoog and G. Bjursell, Nuclear and cytoplasmic pools of deoxyribonucleoside triphosphates in Chinese hamster ovary cells, J. Biol. Chem., 249: 6434 – 6438 (1974).PubMedGoogle Scholar
  47. 47.
    L. Skoog and B. Nordenskjöld, Effects of hydroxyurea and l-p- D-arabinofuranosylcytosine on deoxyribonucleotide pools in mouse embryo cells, Eur. J. Biochem., 19: 81 – 89 (1971).PubMedCrossRefGoogle Scholar
  48. 48.
    G. K. Smith, W. T. Mueller, G. F. Wasserman, W. D. Taylor, and S. J. Benkovic, Characterization of the enzyme complex involving the folate-requiring enzymes of de novopurine biosynthesis, Biochemistry, 19: 4313 – 4321 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    P. S. Srere and R. W. Estabrook (eds.), Microenvironments and Metabolic Compartmentation, Academic Press, New York (1978)Google Scholar
  50. 50.
    M. R. Taheri, R. G. Wickremasinghe, and A. V. Hoffbrand, Alternative metabolic fates of thymine nucleotides in human cells, Biochem. J., 194: 451 – 461 (1981).PubMedGoogle Scholar
  51. 51.
    P. K. Tomich, C.-S. Chiu, M. G. Wovcha, and G. R. Greenberg, Evidence for a complex regulating the in vivoactivities of early enzymes induced by bacteriophage T4, J. Biol. Chem., 249: 7613 – 7622 (1974).PubMedGoogle Scholar
  52. 52.
    T. W. Traut and M. E. Jones, Inhibitors of orotate phosphoribosyltransferase and orotidine 5’-phosphate decarboxylase from mouse Ehrlich ascites cells, Biochem. Pharm., 26: 2291 – 2296 (1977).PubMedCrossRefGoogle Scholar
  53. 53.
    H. R. Warner, Properties of ribonucleoside diphosphate reductase in nucleotide-permeable cells, J. Bacteriol., 115: 18 – 22 (1973).PubMedGoogle Scholar
  54. 54.
    G. Weinberg, B. Ullman, and D. W. Martin, Jr., Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools, Proc. Natl. Acad. Sci. USA, 78: 2447–2451 (1981)PubMedCrossRefGoogle Scholar
  55. 55.
    R. Werner, Nature of DNA precursors, Nature, 233: 99 – 103 (1971).Google Scholar
  56. 56.
    R. G. Wickremasinghe and A. V. Hoffbrand, Reduced rate of DNA replication fork movement in megaloblastic anemia, J. Clin. Invest., 65: 26 – 36 (1980).PubMedCrossRefGoogle Scholar
  57. 57.
    R. G. Wickremasinghe, J. C. Yaxley, and A. V. Hoffbrand, Solubilization and partial characterization of a multienzyme complex of DNA synthesis from human lymphoblastoid cells, Eur. J. Biochem., 126: 589 – 596 (1982).PubMedCrossRefGoogle Scholar
  58. 58.
    W. E. Williams and J. W. Drake, Mutator mutations in bacteriophage T4 gene 42, Genetics, 86: 501 – 511 (1977).PubMedGoogle Scholar
  59. 59.
    M. G. Wovcha, C.-S. Chiu, P. K. Tomich, and G. R. Greenberg, Replicative bacteriophage DNA synthesis in plasmolyzed T4-in-fected cells, J. Virol., 20: 142 – 156 (1976).PubMedGoogle Scholar
  60. 60.
    M. G. Wovcha, P. K. Tomich, C.-S. Chiu, and G. R. Greenberg, Direct participation of dCMP hydroxymethylase in synthesis of bacteriophage T4 DNA, Proc. Natl. Acad. Sci. USA, 70: 2196 – 2200 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Christopher K. Mathews
    • 1
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations