The Biochemical Basis of 5-Bromouracil- and 2-Aminopurine-Induced Mutagenesis

  • Myron F. Goodman
  • Randi L. Hopkins
  • Roger Lasken
  • Dhanajaya N. Mhaskar
Part of the Basic Life Sciences book series (BLSC, volume 31)


We describe in vitro measurements of heteroduplex base mispaired intermediates involving 5-bromouracil and 2-aminopurine in A·T → G·C and G·C → A·T transition mutation pathways. For the case of 2-amino- purine, 2-aminopurine·cytosine mispairs are formed at a much higher frequency than adenine·cytosine mispairs in either transition path­way. For the case of 5-bromouracil, at least a 40-fold increase in 5-bromouracil-guanine mispairs are observed over thymine·guanine mispairs but only in the A·T → G·C pathway. In the A·T → G·C pathway, mispairs involving 5-bromouracil are formed 2.5-fold more frequently to those involving thymine suggesting perhaps that 5-bromouracil may exhibit substantially different base-pairing behavior depending on whether it is present as a template base or as a deoxyribonucleosides triphosphate substrate. The effect of the base analogs on dNTP pool size perturbations is discussed. A measurement of dNTP pools in 2-aminopurine mutagenized bacteriophage T4-infected cells is presented. An approximate eight-fold expansion in common dNTP pools is observed in a ts L141 antimutator genetic background compared to wild type T4 43+ and ts L56 mutator backgrounds. The effects of distorted dNTP pools on mutagenesis will be considered.


Biochemical Basis Template Strand Base Analog dNTP Pool Prime Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. Ashman and R. L. Davison, Bromodeoxyuridine Mutagenesis in Mammalian Cells is Related to Deoxynucleotide Pool Imbalance, Mol. Cell. Biol., 1: 254–260 (1981).PubMedGoogle Scholar
  2. 2.
    S. Benzer, On the Topography of the Genetic Fine Structure, Proc. Natl. Acad. Sci., U.S.A., 45: 1607–1620 (1959).PubMedCrossRefGoogle Scholar
  3. 3.
    M. J. Bessman, I. R. Lehman, J. A. Adler, S. B. Zimmerman, E. S. Simms, and A. Kornberg, Enzymatic Synthesis of Deoxy- nucleic Acid. III. The Incorporation of Pyrimidine and Purine Analogs into Deoxynucleic Acid, Proc. Natl. Acad. Sci., 44: 633–640 (1958).PubMedCrossRefGoogle Scholar
  4. 4.
    M. J. Bessman, N. Muzyczka, M. F. Goodman, and R. L. Schnaar, Studies on the Biochemical Basis of Spontaneous Mutation. II. The Incorporation of a Base and Its Analog into DNA by Wild- Type, Mutator, and Antimutator DNA Polymerases, J. Mol. Biol., 88: 409–421 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    S. P. Champe and S. Benzer, Reversal of Mutant Phenotypes by Fluorouracil: An Approach to Nucleotide Sequences in Messenger RNA, Proc. Natl. Acad. Sci., U.S.A., 48: 532–546 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    L. M. S. Chang and F. J. Bollum, Deoxynucleotide-Polymerizing Enzymes of Calf Thymus Gland, J. Biol. Chem., 246: 909–916 (1971).PubMedGoogle Scholar
  7. 7.
    L. K. Clayton, M. F. Goodman, E. W. Branscomb, and D. J. Galas, Error Induction and Correction by Mutant and Wild Type T4 DNA Polymerase, J. Biol. Chem., 254: 1902–1912 (1979).PubMedGoogle Scholar
  8. 8.
    C. Coulondre, J. H. Miller, P. J. Farabaugh, and W. Gilbert, Molecular Basis of Base Substitution Hotspots, In Escherichia coli, Nature, 274:775–780 (1979).CrossRefGoogle Scholar
  9. 9.
    W. Drake, Comparative Rates of Spontaneous Mutation, Nature, 221: 1132 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    J. W. Drake, The Molecular Basis of Mutation, Holden-Day, San Francisco (1970).Google Scholar
  11. 11.
    A. R. Fersht, Fidelity of Replication of Phage ⌽X174 DNA by DNA Polymerase III Holoenzyme: Spontaneous Mutation by Mis- incorporation, PNAS U.S.A., 76: 4946–4950 (1979).CrossRefGoogle Scholar
  12. 12.
    A. Fersht, J. W. Knill-Jones, and W. C. Tsui, Kinetic Basis of Spontaneous Mutations Misertion Frequencies, Proofreading Specificities and Cost of Proofreading by DNA Polymerases of E. coli, J. Mol. Biol., 156: 37–51 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Freese, The Specific Mutagenic Effect of Base Analogs on Phage T4, J. Mol. Biol., 1: 87–105 (1959).CrossRefGoogle Scholar
  14. 14.
    C. Garret and D. V. Santi, A Rapid and Sensitive High Pressure Liquid Chromatography Assay for Deoxyribonucleoside Triphosphates in Cell Extracts, Analyt. Biochem., 99: 268–273 (1979).CrossRefGoogle Scholar
  15. 15.
    M. F. Goodman and E. W. Branscomb, DNA Replication Fidelity and Base Mispairing Mutagenesis: Relating Experiments to a Km Discrimination DNA Polymerase Model, in: “Accuracy in Molecular Biology” (D. J. Galas, ed.), Marcel Dekker, to be published (1984).Google Scholar
  16. 16.
    M. F. Goodman, R. Hopkins, and W. C. Gore, 2-Aminopurine-induced Mutagenesis in T4 Bacteriophage: A Model Relating Mutation Frequency to 2-Aminopurine Incorporation in DNA, Proc. Natl. Acad. Sci., U.S.A., 74: 4806–4810 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    M. F. Goodman and R. L. Ratliff, Evidence of 2-Aminopurine* cytosine Base Pairing Involving 2 Hydrogen Bonds: A 2-Amino- purine Tautomer? Submitted for publication (1983).Google Scholar
  18. 18.
    R. Hopkins and M. F. Goodman, Assymmetry in Forming 2-Amino- purine ’hydroxymethylcy to sine Heteroduplexes; A Model Giving Misincorporation Frequencies and Rounds of DNA Replication from Base-Pair Populations in vivo, J. Mol. Biol., 135: 1–22 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Hopkins and M. F. Goodman, Deoxyribonucleotide Pools, Base Pairing and Sequence Configuration Affecting Bromodeoxyuridine- and 2-Aminopurine-Induced Mutagenesis, Proc. Natl. Acad. Sci., U.S.A., 77: 1801–1805 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    R. B. Innman and R. L. Baldwin, Helix-Random Coil Transitions in DNA Homopolymer Pairs, J. Biol. Chem., 8: 452–469 (1964).Google Scholar
  21. 21.
    E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells: Mutagenesis is Independent of the Amount of Bromouracil in DNA, Proc. Natl. Acad. Sci., 75: 4982–4986 (1978).PubMedCrossRefGoogle Scholar
  22. 21.
    E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells: Mutagenesis is Independent of the Amount of Bromouracil in DNA, Proc. Natl. Acad. Sci., 75: 4982–4986 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    C. K. Mathews, Biochemistry of Deoxyribonucleic Acid-Defective Amber Mutants of Bacteriphage T4. (Ill Nucleotide Pools), The J. of Biol. Chem., 247: 7430–7438 (1972).Google Scholar
  24. 24.
    M. Meuth and H. Green, Alterations Leading to Increased Ribonucleotide Reductase in Cells Selected for Resistance to Deoxy- nucleosides, Cell, 3: 367–374 (1974).PubMedCrossRefGoogle Scholar
  25. 24.
    M. Meuth and H. Green, Alterations Leading to Increased Ribonucleotide Reductase in Cells Selected for Resistance to Deoxy- nucleosides, Cell, 3: 367–374 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    C. F. Morris, H. Hammar-Inaba, D. Mare, N. K. Sinha, and B. Alberts, Purification of the Gene 43, 44, 45, and 62 Proteins of the Bacteriophage T4 DNA Replication Apparatus, J. Biol. Chem., 254: 6787–6796 (1979).PubMedGoogle Scholar
  27. 27.
    N. Muzyczka, R. L. Poland, and M. J. Bessman, Studies on the Biochemical Basis of Spontaneous Mutation. I. A Comparison of the Deoxyribonucleic Acid Polymerases of Mutator, Antimutator, and Wild Type Strains of Bacteriophage T4, J. Biol. Chem., 247: 7116–7122 (1972).PubMedGoogle Scholar
  28. 28.
    L. S. Ripley, The Influence of Diverse Gene 43 DNA Polymerases on the Insertion and Replication in vivoof 2-Aminopurine at A-T BaSe Pairs in Bacteriophage T4, J. Mol. Biol., 150: 197–216 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Ronen, 2-Aminopurine, Mutat. Res., 69: 1–47 (1979).Google Scholar
  30. 30.
    A. Ronen and A. Rahat, Mutagen Specificity and Position Effects on Mutation T4 rji Nonsense Sites, Mutation Rev., 34: 21–34 (1976).Google Scholar
  31. 31.
    B. Rydberg, Bromouracil Mutagenesis and Mismatch Repair in Mutator Strains of Escherichia coli, Mutat. Res., 52: 11–24 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    T. R. Skopek and F. Hutchinson, DNA Base Sequence Changes Induced by Bromouracil Mutagenesis of Lambda Phage, J. Mol. Biol., 159: 19–33 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    L. Thelander and P. Reichard, Reduction of Ribonucleotides, Ann. Rev. Biochem., 48: 133 - 158 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    T. A. Trautner, M. N. Swartz, and A. Romberg, Enzymatic Synthesis of Deoxyribonucleic Acid, X. Influence of Bromouracil Substitutions on Replication, Proc. Natl. Acad. Sci. U.S.A., 48: 449–455 (1962).PubMedCrossRefGoogle Scholar
  35. 35.
    S. M. Watanabe and M. F. Goodman, On the Molecular Basis of Transition Mutations: The Frequencies of Forming and 2-Amino- purine • cy to sine Adene«cytosine Base Mispairs in vitro, Proc. Natl. Acad. Sci., U.S.A., 78: 2864–2868 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Myron F. Goodman
    • 1
  • Randi L. Hopkins
    • 1
  • Roger Lasken
    • 1
  • Dhanajaya N. Mhaskar
    • 1
  1. 1.Department of Biological Sciences Molecular Biology SectionUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations