Induction of Mitochondrial Mutations in Human Cells by Methotrexate

  • David I. Hoar
  • Leo S. Dimnik
Part of the Basic Life Sciences book series (BLSC, volume 31)


Inhibition of dihydrofolate reductase by the folate analog, methotrexate (MTX) results in a depletion of tetrahydrofolate dependent one carbon transfer reactions in amino acid and nucleic acid biosynthesis. When human cells (either HeLa or normal skin fibroblasts) are exposed to MTX in a defined medium containing dialyzed fetal calf serum, essential and non-essential amino acids, and purine source, the thymidylate pools alone are depleted. Under these conditions exposure to 10-6 M MTX induces mitochondrial mutagenesis, measured as an increase in the frequency of chloramphenicol resistant (CAPR) colonies, without altering the rate of nuclear mutation monitored by determining the frequency of 6-thioguanine resistance (TGr). The occurrence of CAPR mutations is time, and MTX concentration dependent and the frequency of CAPR can be decreased quantitatively by adding thymidine to the culture medium. This mitochondrial specific mutagenesis can also be achieved using the thymidylate synthetase inhibitor, 5-fluorodeoxyuridine further implicating thymidylate pools as the mediator of this effect. During the course of exposure to 10-6 M MTX the thymidine kinase deficient HeLa BU25 cell line exhibits a progressive depletion and degradation of mitochondrial DNA suggesting that the mutagenesis and DNA degradation represent portions of a progressive process. The basis for the selective sensitivity of the mitochondrial genome to thymidylate depletion mutagenesis may be the consequence of its differences from the nuclear genome in mechanisms of DNA replication or repair.


Thymidine Kinase Chloramphenicol Resistance Normal Skin Fibroblast Dialyze Fetal Calf Serum Nucleic Acid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. T. M. Anderson and E. C. Friedberg, The presence of nuclear and mitochondrial uracil-DNA-glycohydrolase in extracts of human KB cells, Nucleic Acid Res., 8: 875 - 888 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    J. R. Andrews, in: “Radiotherapy,” pp. 395 - 416, University Park Press, Baltimore (1978).Google Scholar
  3. 3.
    B. J. Barclay and J. G. Little, Genetic damage during thymidylate starvation in Saccharomyces cerevisiae, Molec. Gen. Genet., 160: 33 - 40 (1978).Google Scholar
  4. 4.
    H. Blanc, C. T. Wright, M. J. Bibb, D. C. Wallace, and D. A. Clayton, Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3’-end of the large ribosomal RNA, Proc. Natl. Acad. Sci., U.S.A., 78: 3789 - 3793 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Bogenhagen and D. A. Clayton, The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells, J. Biol. Chem., 249: 7991 - 7995 (1974).PubMedGoogle Scholar
  6. 6.
    J. Borsa and G. F. Whitmore, Cell killing studies on the mode of action of methotrexate on L-cells in vivo, Cancer Research, 29: 737 - 744 (1969).PubMedGoogle Scholar
  7. 7.
    G. G. Carmichael and G. K. McMaster, The analysis of nucleic acids in gels using glyoxal and acridine orange, in: “Methods in Enzymology”, Vol. 65, pp. 380 - 391, Academic Press, New York (1980).Google Scholar
  8. 8.
    R. Carroll, J. Ash, P. Vogt, and J. Singer, Reversion of transformed glycolysis to normal by inhibition of protein synthesis in rat kidney cells infected with temperature sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci., U.S.A., 75: 5015 - 5019 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Demple and S. Linn, DNA N-glycosylases and UV repair, Nature (London), 287: 203 - 208 (1980).CrossRefGoogle Scholar
  10. 10.
    L. Dimnik, Mutagenesis of the mitochondrial genome by methotrexate, M.Sc. Thesis, University of Calgary (1982).Google Scholar
  11. 11.
    L. Dimnik, R. B. Church, and D. I. Hoar, Induction of mitochondrial mutants by methotrexate, submitted for publication (1983).Google Scholar
  12. 12.
    M. Goulian, B. Bleile, and B. Y. Tseng, Methotrexate-induced misincorporation of uracil into DNA, Proc. Natl. Acad. Sci., U.S.A., 77: 1956 - 1960 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    T. C. Hall and G. A. Gudouskas, Chemical pharmacology and biochemical interactions of currently useful anticancer drugs, Meth. Can. Res., 17: 313 - 349 (1979).Google Scholar
  14. 14.
    K. R. Harrap, B. T. Hill, M. E. Furness, and L. I. Hart, Sites of action of amethopterin: Intrinsic and acquired drug resistance, Ann. N.Y. Acad. Sci., 186: 312 - 324 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    D. I. Hoar and P. Sargent, Chemical mutagen sensitivity in Ataxia telangiectasia, Nature (London), 261: 590 - 592 (1976).CrossRefGoogle Scholar
  16. 16.
    H. A. Ingraham, B. Y. Tseng, and M. Goulian, Mechanism for exclusion of 5-fluorouracil from DNA, Cancer Research, 80: 998 - 1001 (1980).Google Scholar
  17. 17.
    H. A. Ingraham, B. Y. Tseng, and M. Goulian, Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuridine, Molec. Pharmacol., 21: 211 - 216 (1982).Google Scholar
  18. 18.
    S. Kearsey and I. W. Craig, Altered ribosomal RNA genes in mitochondria from mammalian cells with chloroamphenical resistance, Nature, 290: 607 - 608 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Kit, D. R. Dubbs, and P. M. Frearson, HeLa cells resistant to bromodeoxyuridine and deficient in thymidine kinase activity, J. Cancer, 1: 19 - 30 (1966).Google Scholar
  20. 20.
    S. Kit, W.-C. Leung, and L. A. Kaplan, Distinct molecular form of thymidine kinase in mitochondria of normal and BudR-resistant HeLa cells, Eur. J. Biochem., 39: 43 - 48 (1973).PubMedCrossRefGoogle Scholar
  21. 21.
    T. A. Kunkel and L. A. Loeb, Fidelity of mammalian DNA polymerases, Science, 211: 765 - 767 (1981).CrossRefGoogle Scholar
  22. 22.
    B. A. Kunz, B. J. Barclay, J. C. Game, J. G. Little, and R. H. Haynes, Induction of mitotic recombination in yeast by starvation for thymidine nucleotides, Proc. Natl. Acad. Sci., U.S.A., 77: 6057 - 6061 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    B. A. Kunz and R. H. Haynes, DNA repair and the genetic effects of thymidylate stress in yeast, Mutation Research, 93: 353 - 375 (1982).CrossRefGoogle Scholar
  24. 24.
    J. Littlefield, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Since, 145: 709 - 710 (1964).CrossRefGoogle Scholar
  25. 25.
    H. Mahler, Biogenetic autonomy of mitochondria, C.R.C. Crit. Rev. Biochem., 1: 381 - 460 (1973).CrossRefGoogle Scholar
  26. 26.
    V. McKusick, Medelian inheritance in Man, John Hopkins Press (1979).Google Scholar
  27. 27.
    J. A. Montgomery, Synthetic chemicals, in: “Methods in Cancer Research: Cancer Drug Development,” Part A (V. T. DeVita, Jr., and H. Busch, eds.), pp. 3 - 25, Academic Press, New York (1979).Google Scholar
  28. 28.
    G. Pontecorvo, Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment, Somatic Cell Genet., 1: 377 - 400 (1975).CrossRefGoogle Scholar
  29. 29.
    J. W. Shay, Selection of reconstituted cells from karyoplasts fused to chloramphenicol-resistant cytoplasts, Proc. Natl. Acad. Sci., U.S.A., 74: 2461 - 2464 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    E. M. Southern, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 89: 503 - 517 (1975).CrossRefGoogle Scholar
  31. 31.
    C. M. Spolsky and J. M. Eisenstadt, Chloramphenicol-resistant mutants of human HeLa cells, FEBS Letters, 25: 319 - 324 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    E.-M. Suolinna, D. R. Long, and E. Racher, Quercetin, and artifical regulation of the high aerobic glycolysis of tumor cells, J. Natl. Cancer Inst., 53: 1515 - 1519 (1974).PubMedGoogle Scholar
  33. 33.
    D. C. Wallace, C. L. Bunn, and J. M. Eisenstadt, Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells, J. Cell Biol., 67: 174 - 199 (1975).PubMedCrossRefGoogle Scholar
  34. 34.
    D. C. Wallace, N. A. Oliver, H. Blanc, and C. W. Adams, A system to study human mitochondrial genetics: Application to chloramphenicol resistance, in: “Mitochondrial Genetics” (P. Slonimski, et al., eds.), pp. 105 - 116, Cold Spring Harbor Laboratories, New York (1982).Google Scholar
  35. 35.
    R. Waters and E. Moustacchi, The fate of UV-induced pyrimidine dimers in the nuclear and mitochondrial DNAs of Saccharomyces cerevisiae on various postirradiation treatments and its influence on survival and cytoplasmic “petite” induction, in: “Molecular Mechanisms for DNA Repair” (P. C. Hanawalt and R. B. Setlow, eds.), pp. 556 - 565, Plenum Press, New York (1975).Google Scholar
  36. 36.
    A. Wiseman and G. Attardi, Reversible ten fold reduction in mitochondrial DNA content of human cells treated with ethidium bromide, Mol. Gen. Genet., 167: 51 - 63 (1978).Google Scholar
  37. 37.
    A. Wiseman and G. Attardi, Cytoplasmically inherited mutations of human cell line resulting in deficient mitochondrial protein synthesis, Somatic Cell Genet., 5: 241 - 262 (1980).CrossRefGoogle Scholar
  38. 38.
    E. A. Wurtz, B. B. Sears, D. K. Rabert, H. S. Sheperd, N. W. Gillham, and J. E. Boynton, A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-fluoro-deoxyuridine, Molec. Gen. Genet., 170: 235 - 242 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • David I. Hoar
    • 1
  • Leo S. Dimnik
    • 1
  1. 1.Departments of Medical Biochemistry and PediatricsThe University of CalgaryCalgaryCanada

Personalised recommendations