Advertisement

The Structure of the mer Operon

  • Patricia Barrineau
  • Pearce Gilbert
  • W. James Jackson
  • Cheryl S. Jones
  • Anne O. Summers
  • Sonya Wisdom

Abstract

The DNA sequence has been determined for a 3.8-kb region which encodes the mercury-resistance (mer) operon of the IncFII plasmid NRl. The sequence reveals 4 open reading frames which could encode proteins of 12,522, 9,429, 14,965, and 58,912 d corresponding to the 4 previously+described Hg-inducible proteins detected in minicells carrying mer plasmids. The Hg(II) reductase protein sequence is about 90% homologous to that of Tn501, but the DNA sequence shows a homology of 60–70% to that of Tn501 except for short regions of very high homology. The entire mer region is 63.4% G-C overall. The region encoding the merR (positive regulatory) function has 3 possible open reading frames, 2 of which overlap in one direction and the third of which reads in the opposite direction. Attempts to visualize the polypeptide(s) encoded by the merR cistron were unsuccessful.

Keywords

Mercury Compound Mercuric Acetate Mercuric Reductase Phenyl Mercuric Acetate Organomercurial Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alton, N.K., and D. Vapnek (1979) Transcription and translation of R-plasmid R538-1 DNA. Plasmid 3: 366–376.CrossRefGoogle Scholar
  2. 2.
    Barrineau, P., P. Gilbert, W. James Jackson, C.S. Jones, A.O. Summers, and S. Wisdom (1984) The DNA sequence of the plasmid- determined mer operon (in preparation).Google Scholar
  3. 3.
    Barrineau, P.J., and A.O. Summers (1983) A second positive regulatory function in the mer (mercury resistance) operon. Gene 25: 209–221.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett, P.M., J. Grinsted, C.L. Choi, and M.H. Richmond (1978) Characterization of Tn501, a transposon determining resistance to mercuric ions. Mol. Gen. Genet. 159: 101–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Bohlander, F.A., A.O. Summers, and R.B. Meagher (1981) Cloning a promoter that puts the expression of tetracycline resistance under the control of the regulatory elements of the mer operon. Gene 15: 395–403.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown, N.L., S.J. Ford, R.D. Pridmore, and D.C. Fritzinger (1983) DNA sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22: 4089–4095.PubMedCrossRefGoogle Scholar
  7. 7.
    Colwell, R.R., G.S. Sayler, J.D. Nelson, Jr., and A. Justice (1976) Microbial mobilization of mercury in the aquatic environment. In Environmental Biogeochemistry: Metal Transfer and Ecological Mass Balances, Vol. 2, J.D. Nriagv, ed. Ann Arbor Science, Ann Arbor, Michigan, pp. 473–486.Google Scholar
  8. 8.
    de la Cruz, F., and J. Grinsted (1982) Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J. Bact. 151: 222–228.PubMedGoogle Scholar
  9. 9.
    Foster, T.J. (1983) Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361–409.PubMedGoogle Scholar
  10. 10.
    Foster, T.J., H. Nakahara, A.A. Weiss, and S. Silver (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R100.1. J. Bact. 140: 167–181.PubMedGoogle Scholar
  11. 11.
    Fox, B.S., and C.T. Walsh (1982) Mercuric reductase: Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction active disulfide. J. Biol. Chem. 257: 2498–2503.PubMedGoogle Scholar
  12. 12.
    Fox, B.S., and C.T. Walsh (1983) Mercuric reductase: Homology to glutathione reductase and lipoamide dehydrogenase. lodoacetamide alkylation and the sequence of the active site peptide. Biochem. 22: 4082–4088.CrossRefGoogle Scholar
  13. 13.
    Furukawa, K., and K. Tonomura (1972) Induction of metallic mercury-releasing enzyme in mercury-resistant Pseudomonas. Agric. Biol. Chem. 36: 2441–2448.CrossRefGoogle Scholar
  14. 14.
    Jackson, W.J., and A.O. Summers (1982) Polypeptides encoded by the mer operon. J. Bact. 149: 479–487.PubMedGoogle Scholar
  15. 15.
    Jackson, W.J., and A.O. Summers (1982) Biochemical characterization of the HgCl-inducible polypeptides encoded by the mer operon of R100. J. Bact. 151: 962–970.PubMedGoogle Scholar
  16. 16.
    Kyte, J., and R. Doolittle (1982) A method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.PubMedCrossRefGoogle Scholar
  17. 17.
    Messing, J. (1983) New M13 vectors for cloning. Meth. Enzymol. 101: 20–89.PubMedCrossRefGoogle Scholar
  18. 18.
    Miki, T., A.M. Easton, and R.H. Rownd (1976) Mapping of the resistance genes of the R plasmid NRl. Mol. Gen. Genet. 158: 217–224.CrossRefGoogle Scholar
  19. 19.
    Nakahara, H., S. Silver, T. Miki, and R.H. Rownd (1979) Hyper-sensitivity to Hg and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NRl. J. Bact. 140: 161–166.PubMedGoogle Scholar
  20. 20.
    Ni’Bhriain, N.N., S. Silver, and T.J. Foster (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J. Bact. 155: 690–703.PubMedGoogle Scholar
  21. 21.
    Porter, F., S. Silver, C. Ong, and H. Nakahara (1982) Selection for mercurial resistance in hospital settings. Antimicrob. Agents. Chemother. 22: 852–858.PubMedGoogle Scholar
  22. 22.
    Pribnow, D. (1975) Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Natl. Acad. Sci., USA 72: 784–789.PubMedCrossRefGoogle Scholar
  23. 23.
    Radford, A.J., J. Oliver, W.J. Kelly, and D.C. Reaney (1981) Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. J. Bact. 147: 1110–1112.PubMedGoogle Scholar
  24. 24.
    Reed, R.R. (1981) Transposon-mediated site-specific recombination: a defined in vitro system. Cell 25: 713–719.PubMedCrossRefGoogle Scholar
  25. 25.
    Rinderle, S.J., J.E. Booth, and J.W. Williams (1983) Mercuric reductase from R-plasmid NRl: Characterization and mechanistic study. Biochem 22: 869–876.CrossRefGoogle Scholar
  26. 26.
    Sanger, F., S. Nicklen, and A.R. Coulsen (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci., USA 74: 5463–5467.PubMedCrossRefGoogle Scholar
  27. 27.
    Schottel, J.L. (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J. Biol. Chem. 253: 4341–4349.PubMedGoogle Scholar
  28. 28.
    Shine, J., and L. Dalgarno (1974) The 3’-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosomal binding sites. Proc. Natl. Acad. Sci, USA 71: 1342–1346.PubMedCrossRefGoogle Scholar
  29. 29.
    Stanisich, V.A., P.M. Bennett, and M.H. Richmond (1977) Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J. Bact. 129: 1227–1233.PubMedGoogle Scholar
  30. 30.
    Summers, A.O., and S. Silver (1978) Microbial transformations of metals. Ann. Rev. Microbiol. 32: 637–672.CrossRefGoogle Scholar
  31. 31.
    Summers, A.O., R.B. Weiss, and G.A. Jacoby (1980) Transposition of mercury resistance from a transferrable R plasmid of Escherichia coli. Plasmid 3: 35–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Tanaka, N., J.H. Cramer, and R.H. Rownd (1976) EcoRI restriction endonuclease map of the composite R plasmid NRl. J. Bact. 127: 619–636.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Patricia Barrineau
    • 1
  • Pearce Gilbert
    • 1
  • W. James Jackson
    • 1
  • Cheryl S. Jones
    • 1
  • Anne O. Summers
    • 1
  • Sonya Wisdom
    • 1
  1. 1.Department of MicrobiologyThe University of GeorgiaAthensUSA

Personalised recommendations