Advertisement

Aspects of Intramolecular Dynamics in Chemistry

Chapter
Part of the NATO ASI Series book series (NSSB, volume 120)

Abstract

The role of chaotic and quasiperiodic behavior of isolated molecules is discussed. The quantum analog of classical quasi- periodic states appears to be relatively well understood. A possible quantum analog of classical chaotic behavior is described, using overlapping quantum mechanical Fermi resonances as a way of generating irregularities. The relation of these Fermi resonances to avoided crossings in eigenvalue plots and to various treatments of intramolecular dynamics in the chemical literature is outlined.

Keywords

Quantum Analog Fermi Resonance Quantum Chaos Classical Resonance Quasiperiodic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Marcus, Laser Chem. (1983) (in press).Google Scholar
  2. 2.
    R. A. Marcus, Faradav Disc. Chem. Soc. 75: 000 (1983).Google Scholar
  3. 3.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Annu. Rev. Phvs. Chem., 32: 267 (1981).ADSCrossRefGoogle Scholar
  4. (a).
    R. A. Marcus, in: “Picosecond Phenomena III, ” K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, and A. Laubereau, eds., Reidel, Dordrecht (1982), p. 254;Google Scholar
  5. (b).
    R. A. Marcus, Ann. N. Y. Acad. Sci., 357: 169 (1980);ADSCrossRefGoogle Scholar
  6. (c).
    R. A. Marcus, in: “Horizons of Quantum Chemistry,” K. Fukui and B. Pullman, eds., Reidel, Dordrecht (1980), p. 107.CrossRefGoogle Scholar
  7. 5.
    P. Rogers, D. C. Montague, J. P. Frank, S. C. Tyler, and F. S. Rowland, Chem. Phys. Lett. 89:9 (1982); P. J. Rogers, J. I. Selco, and F. S. Rowland, Md. 97:313 (1983); but seeJ3. P. Wrigley and B. S. Rabinovitch, ibid. 98: 386 (1983).CrossRefGoogle Scholar
  8. 6.
    V. Lopez and R. A. Marcus, Chem. Phys. Lett. 93: 232 (1982).ADSCrossRefGoogle Scholar
  9. 7.
    J. B. Keller, Ann. Phys. 4: 180 (1958).ADSzbMATHCrossRefGoogle Scholar
  10. 8.
    W. Eastes and R. A. Marcus, J. Chem. Phys. 61: 4301 (1974).ADSCrossRefGoogle Scholar
  11. 9.
    D. W. NoidandR. A. Marcus, J. Chem. Phys. 62: 2119 (1975).ADSCrossRefGoogle Scholar
  12. 10.
    Cf. I. C. Percival, Adv. Chem. Phys. 36: 1 (1977).CrossRefGoogle Scholar
  13. 11.
    Cf. M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Compt. Phvs. 47: 412 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 12.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem. Phys. 78:4018 (1983). —ADSCrossRefGoogle Scholar
  15. 13.
    M. V. Berry, Ann. Phys. N. Y. 131:163 (1981); P. J. Richens and M. V. Berry, Physica 2D:495 (1981); D. W. Noid, M. L. Koszykowski, M. Tabor, and R. A. Marcus, J. Chem. Phys. 72:6169 (1980); D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Chem. Phys. Lett. 73:269 (1980); R. Ramaswamy and R. A. Marcus, J. Chem. Phvs. 74: 1379 (1981).Google Scholar
  16. 14.
    T. Uzer, D. W. Noid, and R. A. Marcus, J. Chem. Phys. 79: 000 (1983).CrossRefGoogle Scholar
  17. 15.
    J. N. L. Connor, T. Uzer, R. A. Marcus, and A. D. Smith (to be submitted).Google Scholar
  18. 16.
    J. Stone, E. Thiele, andM. F. Goodman, Chem. Phys. Lett. 71: 171 (1980).ADSCrossRefGoogle Scholar
  19. 17.
    E. L. Sibert III, W. P. Reinhardt, and J. T. Hynes, Chem. Phys. Lett. 92: 455 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  1. 1.Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations