Skip to main content

Semiclassical Quantization on Fragmented Tori

  • Chapter
Chaotic Behavior in Quantum Systems

Part of the book series: NATO ASI Series ((NSSB,volume 120))

Abstract

In many cases the method of Einstein-Brillouin-Keller (or EBK quantization on tori) gives excellent semiclassical quantum levels when the classical motion is integrable. Analysis of the primitive semiclassical quantum energy levels suggests a Poisson distribution of nearest neighbor level spacings. Lack of integrability — classical chaos — Is then associated with (i) failure of the EBK method and (ii) level repulsions, and conjectures as to the form of P(S) the normalized level spacing distribution, as S → 0. The expectation that classical chaos leads to robust avoided crossings (strong level repulsion) seems to have been verified by numerical experiment: however, an expected result does not always verify the initial premise. In this lecture it is argued that even in chaotic volumes of phase space nonintegrability sometimes does not completely destroy the underlying time independent manifold structure of classical phase space: Fragments of the invariant tori remain and may be used as a basis for EBK quantization. This is illustrated for the Hénon-Heiles problem, and for the truncated π/4- right triangular rational billiard — both nonintegrable systems. In both cases the underlying quantum level structure follows from integrable approximations to the dynamics, and avoided crossings are easily rationalized via the primitive (as opposed to uniform) quantization used — leading to the conjecture that classical chaos may have little, a per se, to do with the results of currently available numerical experiments.

Chaos … It has also some other significations among the alchemist.

Ephraim Chambers, Cyclopedia (Supplement of 1753)

Visiting Scientist 1982–83; Permanent address: Department of Chemistry, University of Colorado, and Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of Colorado, Boulder, Colorado, 80309 USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, Verh. Dtsch. Phys. Ges (Berlin) 19, 82 (1917); L. Brillouin, J. Phys. Radium 7, 353 (1926); J. B. Keller, Ann. Phys. (N.Y.) 4, 180 (1958).

    Article  Google Scholar 

  2. Recent reviews and extended expositions include (a) I. C. Percival, Adv. Chem. Phys. 36, 1 (1977)

    Article  Google Scholar 

  3. M. V. Berry in S. Jorna (Ed.) AIP Conference Proceedings #46 (Am. Inst. Phys., New York. 1978 ), p. 16

    Google Scholar 

  4. M. V. Berry, Lectures Notes for the 1981 Les Houches Summer School

    Google Scholar 

  5. D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Ann. Rev. Phy. Chem. 32, 267 (1981)

    Article  ADS  Google Scholar 

  6. V. P. Maslov and M. V. Fedoriuk Semiclassical Approximation in Quantum Mechanics ( Reidel, Boston, 1981 ).

    Book  Google Scholar 

  7. For example, V. I. Arnold, Mathematical Methods of Classical Mechanics ( Springer, New York, 1978 ).

    MATH  Google Scholar 

  8. G. D. Birkhoff, Dynamical Systems, Am. Math. Soc. Colloq. #9 (Providence, RI, 1979 ); J. Moser, Stable and Random Motion in Dynamical Systems ( Princeton University Press, Princeton NJ, 1973 ).

    Google Scholar 

  9. R. T. Swimm and J. B. Delos, J. Chem. Phys. 71, 1706 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  10. F. G. Gustavson, Astron. J. 71, 670 (1966).

    Article  ADS  Google Scholar 

  11. See for example, J. Moser, in AIP Conference Proceedings #46 (Am. Inst. Phys., New York, 1978 ), p. 1.

    Google Scholar 

  12. C. Siegel, Ann. Math. 42, 806 (1941).

    Article  Google Scholar 

  13. M. Henon and C. Heiles, Astron. J. 69, 73 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  14. W. P. Reinhardt and D. Farrelly, J. Phys. (Paris), Colloq. Suppl. 11, 29 (1982).

    Google Scholar 

  15. See for example, Fig. 1 of Ref. 24.

    Google Scholar 

  16. I. C. Percival, J. Phys. B 6, L229 (1973); see also Ref. 2a-d.

    Article  ADS  Google Scholar 

  17. R. A. Marcus, in Horizons of Quantum Chemistry, Eds. K. Fukui and B. Pullman (Reidel, Boston, 1980), p. 107

    Google Scholar 

  18. D. W. Noid, M. C. Koszykowski and R. A. Marcus, J. Chem. Phys. 78, 4018 (1983), and references therein; see also Ref. 2d.

    Article  ADS  Google Scholar 

  19. B. V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. V. Berry, in S. Jorna (Ed.) in AIP Conference Proceedings #46 (Am. Inst. Phys., New York, 1978), p. 16. Quote from p. 18.

    Google Scholar 

  21. M. V. Berry and M. Tabor, Proc. Roy. Soc. Lond. A 356, 375 (1977).

    Article  ADS  MATH  Google Scholar 

  22. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979).

    Article  ADS  Google Scholar 

  23. M. V. Berry, Ann. Phys. (N.Y.) 131, 163 (1981).

    Article  ADS  Google Scholar 

  24. M. J. Giannoni, unpublished remarks at the Como Meeting, 1983.

    Google Scholar 

  25. M. L. Zimmerman, M. M. Kash and D. Kleppner, Phys. Rev. Lett. 45, 1092 (198).

    Google Scholar 

  26. J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. Lett. 50, 579 (1983).

    Article  ADS  Google Scholar 

  27. M. Hé,non and C. Heiles, Ref. 9; and; R. L. Churchill, G. Pecelli and D. L. Rod, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, G. Casati and J. Ford (Eds.) Springer Lecture Notes in Physics 93, p. 76, Springer Verlag (New York, 1979 ); R. H. G. Helleman and T. Bountis, ibid. p. 376. See also Ref. 2d.

    Google Scholar 

  28. C. Jaffe and W. P. Reinhardt, J. Chem. Phys. 77, 5191 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  29. R. B. Shirts and W. P. Reinhardt, J. Chem. Phys. 77, 5204 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Toda, Phys. Lett. A 48, 335 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  31. P. Brumer and J. W. Duff, J. Chem. Phys. 65, 3566 (1976).

    Article  ADS  Google Scholar 

  32. C. Cerjan and W. P. Reinhardt, J. Chem. Phys. 71, 1819 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Kosloff and S. A. Rice, 74, 1947 (1981).

    Google Scholar 

  34. See Refs. 7 and 8.

    Google Scholar 

  35. J. B. Keller and S. I. Rubinow, Ann. Phys. (N.Y.) 9, 24 (1960).

    Article  ADS  MATH  Google Scholar 

  36. A. N. Zemlyakov, A. B. Katok, Math. Zametki 18, 291 (1975), English Trans: Math. Notes 18, 760 (1976).

    MATH  Google Scholar 

  37. P. J. Richens and M. V. Berry, Physica 2D, 495 (1981).

    MathSciNet  MATH  Google Scholar 

  38. B. Eckhardt, M.S. Thesis, Georgia Institute of Technology, 1982, unpublished.

    Google Scholar 

  39. This was confirmed, in conversations at Como, by P. J. Richens, private communication, 1983.

    Google Scholar 

  40. See also the discussion in N. Saito, H. Hirooka, J. Ford, F. Vivaldi, and G. H. Walker, Physics 5D, 273 (1982); and, S. J. Shenker and L. P. Kadanoff, J. Phys. A 14, L23 (1981), where hopping between approximate tori (the vague tori of Ref. 24) is discussed.

    Google Scholar 

  41. M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Reinhardt, W.P. (1985). Semiclassical Quantization on Fragmented Tori. In: Casati, G. (eds) Chaotic Behavior in Quantum Systems. NATO ASI Series, vol 120. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2443-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2443-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9485-6

  • Online ISBN: 978-1-4613-2443-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics