Skip to main content

The Experimental Situation in D Meson Decay

  • Chapter
Flavor Mixing in Weak Interactions
  • 71 Accesses

Abstract

It has been clear for some time that the simple light quark spectator model of charm quark decay1 does not provide a satisfactory explanation of the experimental situation. It is not clear, however, which specific changes to this picture are necessary. These changes, proposed by numerous authors, fall into two broad categories. The first approach assumes the fundamental correctness of the spectator model. That is, the dominant mechanism is thought to be decay of the charmed quark via emission of a W, with subsequent decay of the W into quark pairs. The light quark component of the meson is merely a spectator. The failures of this simple picture, that is, the non-equality of D° and D + lifetimes and the erroneous prediction of suppression of the decay D° → \(overline K ^\circ \pi ^\circ \) are dealt with by two basic modifications:

  1. 1)

    The change of the two QCD couplings f + and f - from their calculated values.2 These coefficients have now been calculated by renormalization group techniques not only in leading log approximations but, recently, in the next-to-leading log order. The next order changes are, in fact, small, reinforcing the correctness of the leading log values (f + ≅ .7, f - ≅ 1.9, for six fermions and a mass scale of ∼2 GeV) which have been in use for several years. Nonetheless, in order to account for the experimental facts within this context, it is necessary to postulate that f - is, in fact, very much larger than f +. Since the two spectator diagrams in D + decay lead to the same final quark state, they can interfere. If f - >> f +, this interference can be destructive, reducing the D + decay rate and lengthening the D + lifetime. Thus, in this picture the D +/D° lifetime difference is ascribed to an increase in the D + lifetime, with the D° and F + lifetimes occurring at values one would estimate by scaling from muon decay by (m μ/m c )5.

  2. 2)

    The second approach attributes the shorter D° lifetime to the importance of additional (W exchange) amplitudes, occurring only in D° decay.3 These are, naively, suppressed by helicity conservation at the light quark vertex. Either through explicit radiation of soft gluons, or through the gluon component of the quark wavefunction, the W exchange diagram is then enhanced. In this picture, the D + lifetime would occur at the “normal” value while the D° lifetime (and perhaps the F + lifetime through similarly enhanced W annihilation graphs) would be shortened. Since the W exchange process leads to I = 1/2 final states in hadronic D° decay, whereas the spectator process produces both I = 1/2 and I = 3/2 final states, reinforcement of I = 1/2 configurations would be indicative of the importance of exchange diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B100: 313 (1975).

    Article  ADS  Google Scholar 

  2. B. Guberina, S. Nussinov, R. D. Peccei, and R. Rückl, Phys. Lett. 89B: 111 (1979);

    ADS  Google Scholar 

  3. Y. Koide, Phys. Rev. D20: 1739 (1979)

    ADS  Google Scholar 

  4. K. Jagannathan and V. S. Mathur, Phys. Rev. D21: 3165 (1980)

    ADS  Google Scholar 

  5. N. Deshpande, M. Gronau and D. Sutherland, Phys. Lett. 90B: 431 (1980).

    Google Scholar 

  6. G. Altarelli, G. Curci, G. Martinelli and R. Petrarca, Phys. Lett. 99B: 141 (1981)

    Google Scholar 

  7. G. Altarelli, G. Curci, G. Martinelli and R. Petrarca, Nucl. Phys. B 187: 461 (1981).

    Article  ADS  Google Scholar 

  8. M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 44: 7 (1980)

    Google Scholar 

  9. W. Bernreuther, O. Nachtmann and B. Stech, Z. Phys. C4: 257 (1980);

    Google Scholar 

  10. S. P. Rosen, Phys. Rev. Lett. 44: 4 (1980);

    Article  ADS  Google Scholar 

  11. H. Fritzsch and P. Minkowski, Phys. Lett. 90B: 455 (1980).

    Google Scholar 

  12. V. Barger and S. Pakvasa, Phys. Rev. Lett. 43: 812 (1979);

    Article  ADS  Google Scholar 

  13. H.Fritzsch and P.Minkowski, Nucl.Phys. B171:413(1980)

    Google Scholar 

  14. I. Bigi, Phys. Lett. 90B: 177 (1980);

    Google Scholar 

  15. D. Sutherland, Phys. Lett. 90B: 173 (1980);

    Google Scholar 

  16. L. F. Abbott, P. Sikivie and M. B. Wise, Phys. Rev. D21: 768 (1980);

    ADS  Google Scholar 

  17. M. Suzuki, Phys. Rev. Lett. 43: 818 (1979).

    Article  ADS  Google Scholar 

  18. D. Bernstein et al., SLAC-PUB-3222 (1983), to appear in Nucl. Instrum. and Methods;

    Google Scholar 

  19. Members of the MARK III Collaboration are R. M. Baltrusaitis, D. Coffman, G. Dubois, J. Hauser, D. G. Hitlin, J. D. Richman, J. J. Russell, and R. H. Schindler, California Institute of Technology; K. O. Bunnell, R. E. Cassell, D. H. Coward, S. Dado, K. F. Einsweiler, L. Moss, R. F. Mozley, A. Odian, J. R. Roehrig, W. Toki, F. Villa, N. Wermes, and D. E. Wisinski, Stanford Linear Accelerator Center; D. E. Dorfan, R. Fabrizio, F. Grancagnolo, R. P. Hamilton, C. A. Heusch, L. Koepke, W. Lockman, R. Partridge, J. Perrier, H. F. Sadrozinski, T. L. Schalk, A. Seiden, and A. Weinstein, University of California at Santa Cruz; J. J. Becker, G. T. Blaylock, B.Eisenstein, G. Gladding, S. A. Plaetzer, A. L. Spadafora, J. J. Thaler, B. Tripsas, A. Wattenberg, and W. J. Wisniewski, University of Illinois, Champaign-Urbana; J. S. Brown, T. H. Burnett, V. Cook, C. Del Papa, A. L. Duncan, P. M. Mockett, A. Nappi, J. C. Sleeman, and H. J. Willutzki, University of Washington, Seattle.

    Google Scholar 

  20. K. Niu, these Proceedings.

    Google Scholar 

  21. R. Schindler et al., Phys. Rev. D24: 78 (1981).

    ADS  Google Scholar 

  22. W. Bacino et al., Phys. Rev. Lett. 45: 329 (1980).

    Article  ADS  Google Scholar 

  23. I. Bigi and M. Fukugita, Phys. Lett. 91B: 121 (1980).

    Google Scholar 

  24. H. J. Lipkin Phys. Rev. Lett. 44: 710 (1980).

    Article  ADS  Google Scholar 

  25. D. J. Summers et al., Phys. Rev. Lett. 52: 410 (1984).

    Article  ADS  Google Scholar 

  26. R. Bailey et al., Phys. Lett. 132B: 237 (1983).

    Google Scholar 

  27. G. Abrams et al., Phys. Rev. Lett. 43: 481 (1979).

    Article  ADS  Google Scholar 

  28. R. Partridge, Ph.D. Thesis, California Institute of Technology, 1984 (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hitlin, D. (1984). The Experimental Situation in D Meson Decay. In: Chau, LL. (eds) Flavor Mixing in Weak Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2439-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2439-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9483-2

  • Online ISBN: 978-1-4613-2439-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics