Mössbauer Spectroscopy of Soils and Sediments

  • Lawrence H. Bowen
  • Sterling B. Weed


Soils are the most wide-spread form of iron-containing material on the land portion of the earth’s surface. Together with aquatic sediments they provide a varied and important group of materials for which Mössbauer spectroscopy is an appropriate technique of study. They have been, however, less studied by this technique than many more-specialized geological samples. Part of this is certainly due to the complicated iron mineralogy of soils. Another important reason is the requirement of scientific expertise in two diverse areas in order to have a reasonable expectation of obtaining significant results. This review will concentrate on papers of the last five years, during which time there has been significant increase in both quantity and quality of reports in this applied field of Mossbauer spectroscopy. As far as we are aware, all papers dealing with this subject refer to the 57Fe resonance.


Humic Acid Mossbauer Spectroscopy Ferric Hydroxide Mossbauer Spectrum Neel Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Bowen, Mössbauer Spectroscopy of Ferric Oxides and Hydroxides, Mössbauer Effect Data J. 2:76–94 (1979).Google Scholar
  2. 2.
    B. A. Goodman, Mössbauer Spectroscopy, in“Advanced Chemical Methods for Soil and Clay Minerals Research”, J. W. Stucki and W. L. Banwart, ed., p.1–92, D. Reidel, Dordrecht (1980).Google Scholar
  3. 3.
    B. A. Goodman, Mossbauer Spectroscopy, in“Advanced Techniques for Clay Mineral Analysis”, J. J. Fripiat, ed. p. 113–137, Elsevier Scientific Publishing Co., Amsterdam (1981).Google Scholar
  4. 4.
    J.M.D. Coey, Clay Minerals and Their Transformations Studied with Nuclear Techniques:The Contribution of Mossbauer Spectroscopy, At. Energy Rev., 18:73–124(1980).Google Scholar
  5. 5.
    L. Heller-Kallai and I. Rozenson, The Use of Mössbauer Spectroscopy of Iron in Clay Mineralogy, Phys. Chem. Min., 7:223–238(1981).CrossRefGoogle Scholar
  6. 6.
    J. Dolnicar, Application of Mossbauer Spectroscopy in Mineralogy, Soil Science and Ceramics:Co-ordinated Research Programme, 1977–1980, At. Energy Rev. Suppl., 2:257–268(1981).Google Scholar
  7. 7.
    T. Tominaga, Environmental and Geochemical Applications of Mossbauer Spectroscopy, in “Short-Lived Radionuclides in Chemistry and Biology”, J. W. Root and K. A. Krohn, ed., p. 495 - 509, American Chemical Society, Washington, D.C. (1981).Google Scholar
  8. 8.
    D. C. Golden, L. H. Bowen, S. B. Weed and J. M. Bigham, Mössbauer Studies of Synthetic and Soil-Occurring Aluminum-substituted Goethites, Soil Sci. Soc. Amer. J., 43:802–808(1979).CrossRefGoogle Scholar
  9. 9.
    E. Murad, Mössbauer Spectra of Goethite:evidence for structural imperfections, Min. Mag., 43:355–361(1979).CrossRefGoogle Scholar
  10. 10.
    J. Fleisch, R. Grimm, J. Grübler and P. Gütlich, Determination of the Aluminum Content of Natural and Synthetic Alumogoethites using Mossbauer Spectroscopy, J. de Phys., 41-C1:169–170 (1980).Google Scholar
  11. 11.
    B. A. Goodman and D. G. Lewis, Mössbauer Spectra of Aluminous Goethites (α-FeOOH), J. Soil Sci., 32:351–363 (1981).CrossRefGoogle Scholar
  12. 12.
    J. H. Johnston and K. Norrish, A57Fe Mössbauer Spectroscopic Study of a Selection of Australian and Other Goethites, Aust. J. Soil Res., 19:231–237 (1981).CrossRefGoogle Scholar
  13. 13.
    S. A. Fysh and P. E. Clark, Aluminous Goethite:A Mossbauer Study, Phys. Chem. Min., 8:180–187(1982).CrossRefGoogle Scholar
  14. 14.
    E. Murad, The Characterization of Goethite by Mössbauer Spectroscopy, Amer. Min., 67:1007–1011(1982).Google Scholar
  15. 15.
    E. Murad and U. Schwertmann, The Influence of Aluminum Substitution and Crystallinity on the Mössbauer Spectra of Goethite, Clay Min., 18:301–312(1983).CrossRefGoogle Scholar
  16. 16.
    S. Music, Z. Dragcevic, O. Lahodny-Sarc, I. Nagy-Czako, and A. Vertés, Mössbauer Effect Study of Some Yugoslav Bauxites, J. de Phys., 41-C1:305–306 (1980).Google Scholar
  17. 17.
    S. A. Fysh and P. E. Clark, A. Mössbauer Study of the Iron Mineralogy of Acid-Leached Bauxites, Hydrometallurgy, 10:285–303 (1983).CrossRefGoogle Scholar
  18. 18.
    K. Jonas, K. Solymar and J. Zöldi, Some Applications of Mössbauer Spectroscopy for the Quantitative Analysis of Minerals and Mineral Mixtures, J. Mol. Struct., 60:449–452(1980).CrossRefGoogle Scholar
  19. 19.
    E. DeGrave, L. H. Bowen and S. B. Weed, Mössbauer Study of Aluminum-Substituted Hematites, J. Mag. Mag. Mat., 27:98–108 (1982).CrossRefGoogle Scholar
  20. 20.
    T. Tomov, D. Klissurski and I. Mitov, Mössbauer Study of the Formation of Solid Solutions in the α-Fe2O3-Al2O3 System, Phys. Stat. Sol., 73:249–254(1982).CrossRefGoogle Scholar
  21. 21.
    S. A. Fysh and P. E. Clark, Aluminous Hematite: A Mössbauer Study, Phys. Chem. Min., 8:257–267 (1982).CrossRefGoogle Scholar
  22. 22.
    E. DeGrave, L. H. Bowen and G. G. Robbrecht,57Fe Mössbauer Effect Study of the Morin Transition in Some Aluminum Substituted Hematites, in “Studies in Inorganic Chemistry Vol. 3: Solid State Chemistry 1982”, R. Metselaar, H. J. M. Heijligers and J. Schoonman, ed., p. 571–575, Elsevier Scientific Publishing Co., Amsterdam (1983).Google Scholar
  23. 23.
    E. DeGrave, D. Chambaere, and L. H. Bowen, Nature of the Morin Transition in Al-substituted Hematite, J. Mag. Mag. Mat., 30:349–354(1983).CrossRefGoogle Scholar
  24. 24.
    D. Chambaere, A. Govaert, J. De Sitter and E. DeGrave, A Mössbauer Investigation of the Quadrupole Splitting in β-FeOOH, Sol. St. Comm., 26:657–659 (1978).CrossRefGoogle Scholar
  25. 25.
    J. H. Johnston and N. E. Logan, A Precise Iron-57 Mössbauer Spectroscopic Study of Iron(III) in the Octahedral and Channel Sites of Akaganéite (β-iron hydroxide oxide), J. Chem. Soc., Dalton, 13–16 (1979).Google Scholar
  26. 26.
    E. Murad, Mössbauer and X-ray Data on β-FeOOH (Akaganéite), Clay Min., 14:273 – 283 (1979).CrossRefGoogle Scholar
  27. 27.
    M. Ohyabu and Y. Ujihira, Study of the Chemical States of Chlorine and Fluorine in Akaganéite, J. Inorg. Nucl. Chem., 43:3125–3129(1981).CrossRefGoogle Scholar
  28. 28.
    C. W. Childs, B. A. Goodman, E. Paterson, and F.W.D. Woodhams, The Nature of Iron in Akaganéite (β-Fe00H), Aust. J. Chem., 33:15–26(1980).CrossRefGoogle Scholar
  29. 29.
    D. Chambaere and E. De Grave, On the Neél Temperature of βFeOOH: Structural Dependance and Its Implications, J. Mag. Mag. Mat., in press (1984).Google Scholar
  30. 30.
    D. G. Chambaere and E. DeGrave, On the Influence of the Dual Iron Co-ordination on the Hyperfine Field in βFeOOH, J. Mag. Mag. Mat., in press (1984).Google Scholar
  31. 31.
    E. Murad and U. Schwertmann, The Influence of Crystallinity on the Mössbauer Spectrum of Lepidocrocite, Min. Mag., in press (1984).Google Scholar
  32. 32.
    T. S. Gendler, L. S. Yershova, L. O. Karpachevskiy, and R. N. Kuz’min, Nuclear Gamma Resonance Study of Iron Oxides and Hydroxides on Kaolinite, Doklady Akad. Nauk SSSR, 258:1205–1208(1981). Eng. Transl.:Sov. Soil Sci., 13:87–90(1981).Google Scholar
  33. 33.
    A. Diamant, M. Pasternak, and A. Banin, Characterization of Adsorbed Iron in Montmorillonite by Mössbauer Spectroscopy, Clays Clay Min., 30:63–66 (1982).CrossRefGoogle Scholar
  34. 34.
    L. Petersen and K. Rasmussen, Mineralogical Composition of the Clay Fraction of Two Fluvio-Glacial Sediments from East Greenland, Clay Min., 15:135–145 (1980).CrossRefGoogle Scholar
  35. 35.
    P. G. Manning, W. Jones and T. Birchall, Mössbauer Spectral Studies of Iron-Enriched Sediments from Hamilton Harbor, Ontario, Can. Min., 18:291–299 (1980).Google Scholar
  36. 36.
    P. G. Manning, T. Birchall, and W. Jones, Ferric Hydroxides in Surficial Sediments of the Great Lakes and their Role in Phosphorus Availability: A Mössbauer Spectral Study, Can. Min., 19:525–530 (1981).Google Scholar
  37. 37.
    P. G. Manning and W. Jones, The Binding Capacity of Ferric Hydroxides for Non-Apatite Inorganic Phosphorus in Sediments of the Depositional Basins of Lakes Erie and Ontario, Can. Min., 20:169–176 (1982).Google Scholar
  38. 38.
    P. G. Manning, K. R. Lum, and T. Birchall, Forms of Iron, Phosphorus and Trace-Metal Ions in a Layered Sediment Core from Lake Ontario, Can. Min., 21:121–128 (1983).Google Scholar
  39. 39.
    Y. Minai, T. Furuta, K. Kobayashi, and T. Tominaga, A Mössbauer Study of Deep Sea Sediments, Radiochem. Radioanal. Lett., 48:165–174 (1981).Google Scholar
  40. 40.
    S. Papamarinopoulos, P. W. Readman, Y. Maniatis, and A. Simopoulos, Magnetic Characterization and Mössbauer Spectroscopy of Magnetic Concentrates from Greek Lake Sediments, Earth Planet. Sci. Lett., 57:173–181 (1982).CrossRefGoogle Scholar
  41. 41.
    R. J. Suttill, P. Turner, and D. J. Vaughan, The Geochemistry of Iron in Recent Tidal-Flat Sediments of the Wash Area, England: a mineralogical, Mössbauer, and magnetic study, Geochim. Cosmochim. Acta, 46:205–217 (1982).CrossRefGoogle Scholar
  42. 42.
    J. H. Johnston and G. P. Glasby, A Mössbauer Spectroscopic and X-ray Diffraction Study of the Iron Mineralogy of Some Sediments from the Southwestern Pacific Basin, Marine Chem., 11:437–448 (1982).CrossRefGoogle Scholar
  43. 43.
    K. Surendranath and C. Bansal, Mossbauer Effect Study of Polymetallic Nodules from Indian Ocean Bed, Phys. Stat. Sol., 73:K133–136 (1982).CrossRefGoogle Scholar
  44. 44.
    S. Møfrup and H. Lindgreen, Applications of Mössbauer Spectroscopy in Oil Prospecting, “Proc. Internat. Conf. on the Applications of the Mossbauer Effects”, p. 290–292, Indian Nat. Sci. Academy, New Delhi (1982).Google Scholar
  45. 45.
    E. Murad, Iron Oxide Mineralogy of a Hydrothermal Assemblage on Santorini Island, Aegean Sea, Min. Mag., 46:89–93 (1982).CrossRefGoogle Scholar
  46. 46.
    J. M. Bigham, D. C. Golden, L. H. Bowen, S. W. Buol and S. B. Weed, Iron Oxide Mineralogy of Well-drained Ultisols and Oxisols: I. Characterization of Iron Oxides in Soil Clays by Mössbauer Spectroscopy, X-ray Diffractometry, and Selected Chemical Techniques, Soil Sci. Soc. Amer. J., 42:816–825 (1978).CrossRefGoogle Scholar
  47. 47.
    J. M. Bigham, D. C. Golden, S. W. Buol, S. B. Weed and L. H. Bowen, Iron Oxide Mineralogy of Well-drained Ultisols and Oxisols: II. Influence on Color, Surface Area, and Phosphate Retention, Soil Sci. Soc. Amer. J., 42:825–830 (1978).CrossRefGoogle Scholar
  48. 48.
    J. M. Bigham, D. C. Golden, L. H. Bowen, S. W. Buol, and S. B. Weed, Mössbauer and X-ray Evidence for the Pedogenic Transformation of Hematite to Goethite, Soil Sci. Soc. Amer. J., 42:979–981 (1978).CrossRefGoogle Scholar
  49. 49.
    G. Longworth, L. W. Becker, R. Thompson, F. Oldfield, J. A. Dearing and T. A. Rummery, Mössbauer Effect and Magnetic Studies of Secondary Iron Oxides in Soils, J. Soil Sci., 30:93–110 (1979).CrossRefGoogle Scholar
  50. 50.
    C. W. Childs and B. A. Goodman, Application of Mössbauer Spectroscopy to the Study of Iron Oxides in Some Red and Yellow/Brown Soil Samples from New Zealand, in“International Clay Conference 1978”, M. M. Mortland and V. C. Farmer, ed., p.555–565, Elsevier Scientific Publishing Co., Amsterdam (1979).Google Scholar
  51. 51.
    J. Silver, M. Sweeney, and I.E.G. Morrison, A Mössbauer Spectroscopic Study of Some Clay Minerals of the Eastern Caribbean West Indies. Part I: Spectra from 80 to 300K, Thermochim. Acta, 35:153–167 (1980).CrossRefGoogle Scholar
  52. 52.
    L. H. Bowen and S. B. Weed, Mössbauer Spectroscopic Analysis of Iron Oxides in Soil, in“Mssbauer Spectroscopy and its Chemical Applications”, J. G. Stevens and G. K. Shenoy, ed., p.247–261, American Chemical Society, Washington (1981).CrossRefGoogle Scholar
  53. 53.
    U. Schwertmann, E. Murad, and D. G. Schulze, Is There Holocene Reddening (Hematite Formation) in Soils of Axeric Temperate Areas?, Geoderma, 27:209–223 (1982).CrossRefGoogle Scholar
  54. 54.
    V. K. Maheshwari, J. S. Samra, A. K. Singh, and K. Chandra, Mössbauer Studies of Two Indian Soil Clays, in“Proc. Internat. Conf. on the Applications of the Mössbauer Effect”, p. 866–868, Indian Nat. Sci. Academy, New Delhi (1982).Google Scholar
  55. 55.
    F. Labenski, H. B. Nicolli, and C. Saragovi-Badler, Genesis of Sandstone-Type Uranium Deposits in the Sierra Pintada District, Mendoza, Argentina:A Mössbauer Study, Uranium, 1:1–18 (1982).Google Scholar
  56. 56.
    G. De Geyter, S. Hoste, G. Stoops, R. E. Vandenberghe, and L. Verdonck, Mineralogy of the Ferriferous Soil Materials in the Source Area of Blanchimont (Province of Liege, Belgium), Pedologie, 32:349–366 (1982).Google Scholar
  57. 57.
    S. C. Das, S. K. Sengupta, N. C. Paul, N. Bhattacharya, J. B. Basu and N. Chaudhuri, Mössbauer Spectroscopic Analysis of Iron in Soils and Rocks in the Eastern Himalayan Foothill Region, Indian Pure Appl. Phys., 21:376–378 (1983).Google Scholar
  58. 58.
    J. Ibanga, S. W. Buol, S. B. Weed, and L. H. Bowen, Iron Oxides in Petroferric Materials, Soil Sci. Soc. Amer. J., 47:1240–1246 (1983).CrossRefGoogle Scholar
  59. 59.
    S. A. Fysh and J. Ostwald, A Mössbauer Study of Some Australian Iron Ore Minerals, Min. Mag., 47:209–217 (1983).CrossRefGoogle Scholar
  60. 60.
    B. A. Goodman and M. V. Cheshire, A Mössbauer Spectroscopic Study of the Effect of pH on the Reaction between Iron and Humic Acid in Aqueous Media, J. Soil Sci., 30:85–91 (1979).CrossRefGoogle Scholar
  61. 61.
    D.P.E. Dickson, L. Heller-Kallai, and I. Rozenson, Mössbauer Spectroscopic Studies of Humic Acid and Fulvic Acid Soil Fractions, J. de Phys., 41-Cl:409–410 (1980).CrossRefGoogle Scholar
  62. 62.
    N. Senesi, Spectroscopic Evidence on Organically-bound Iron in Natural and Synthetic Complexes with Humic Substances, Geochim. Cosmochim. Acta, 45:269–272 (1981).CrossRefGoogle Scholar
  63. 63.
    C. W. ChiIds and J. H. Johnston, Mössbauer Spectra of Proto-ferrihydrite at 77K and 295K, and a Reappraisal of the Possible Presence of Akaganéite in New Zealand Soils, Aust. J. Soil Res., 18:245–250 (1980).CrossRefGoogle Scholar
  64. 64.
    E. Murad and U. Schwertmann, The Mössbauer Spectrum of Ferrihydrite and its Relation to Those of Other Iron Oxides, Amer. Min., 65:1044–1049 (1980).Google Scholar
  65. 65.
    U. Schwertmann, D. G. Schulze, and E. Murad, Identification of Ferrihydrite in Soils by Dissolution Kinetics, X- ray Diffraction, and Mössbauer Spectroscopy, Soil Sci. Soc. Amer. J., 46:869–875 (1982).CrossRefGoogle Scholar
  66. 66.
    E. Murad, Ferrihydrite Deposits on an Artesian Fountain in Lower Bavaria, N. Jb. Miner. Mh., 45–56 (1982).Google Scholar
  67. E. Murad and R. M. Taylor, The Mössbauer Spectra of Hydroxycarbonate Green Rusts, Clay Min., 19:77–83 (1984).Google Scholar
  68. 68.
    C. Wivel and S. Mørup, Improved Computational Procedure for Evaluation of Overlapping Hyperfine Parameter Distributions in Mossbauer Spectra, J. Phys. E, 14:605–610 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lawrence H. Bowen
    • 1
  • Sterling B. Weed
    • 1
  1. 1.Departments of Chemistry and Soil ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations