Oxide Single Crystal Growth

  • Dennis J. Viechnicki
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 30)


Processing of ceramics from the liquid phase includes glass formation, glass-ceramics, fusion casting of refractories eutectic solidification, and single crystal growth. Ceramics include oxides, borides, carbides, and nitrides. This paper will, however, only discuss oxide single crystal growth as a form of processing. Borides, carbides, and nitrides generally sublime at very high temperatures rather than melt and, therefore, they are not processed from the liquid phase. Oxides can be processed from the liquid phase. The reasons why it is preferable to process them as single crystals if high technology applications are required will be discussed. The paper will also cover the factors that have allowed oxide single crystal growth to go from the laboratory to the factory by covering the modern crystal growth processing techniques. Materials and applications will be covered in the course of discussion.


Crystal Growth Yttrium Aluminum Garnet Growth Interface Single Crystal Growth Yttrium Aluminum Garnet Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Janef Thermomechanical Tables, The Dow Chemical Co., Midland, MI, USA March 1964.Google Scholar
  2. 2.
    A. D. Kirshenbaum, and, J. A. Cahill, The Density of Liquid Aluminum Oxide, J. Inorg. Nucl. Chem., 14: 283. (1960)CrossRefGoogle Scholar
  3. 3.
    J. L. Caslavsky, and D. J. Viechnicki, Melting Behavior and Metastability of Yttrium Aluminum Garnet (YAG) and YAIO3 Determined by Optical Differential Thermal Analysis, J. Matls Sci., 15: 1709. (1980)CrossRefGoogle Scholar
  4. 4.
    A Verneuil, Production Artificielle du Rubis par Fusion, Paris Acad, Sci, Compt. Reed., 135: 791. (1902)Google Scholar
  5. 5.
    K. Nassau, Dr. A. V. L. Verneuil: The Man and the Method, J. Cryst. Growth, 13 /14: 12. (1972)CrossRefGoogle Scholar
  6. 6.
    J. Czochralski, Ein reues Verfahrer zar Messurg der Kristallistionsgeschurinchigkeit der Metalle., Phys. Chem., 92: 219 (1917)Google Scholar
  7. 7.
    P. W. Bridgman, Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismaith, Tellurium, Cadimium, Zinc, and Tin, Proc. Am. Acad.Arts Sci. 60: 305. (1925)CrossRefGoogle Scholar
  8. 8.
    D. C. Stockbarger, Large Single Crystals of Lithium Flouride, Rev. Sci.Inst., 7: 133. (1936)CrossRefGoogle Scholar
  9. 9.
    H. Djevaherdjian, Procede de Fabrication d’ein Corps en Peirre Synthetique, et Installation Pour la Mise en Oeuvre de ce Procede, Swiss Patent No. 354428, July 1961.Google Scholar
  10. 10.
    W. D. Lawsen, and S. Nielson, Semiconducting Compounds in “The Art and Science of Growing Crystals”, J. J. Gilman, ed. John Wiley and Sons, Inc., New York, p. 372 (1963).Google Scholar
  11. 11.
    Ibid, p. 371.Google Scholar
  12. 12.
    R. Uhrin, and R. F. Belt, “Growth of Large Diameter Nd: YAG Laser Crystals”, Interim Report, 1 April 1980 to 31 March 1981, Contract No. DAAB-07-77-C-0375, Modification P00003, US Army Electronics R&D Command Night Vision and Electro-Optics Laboratory, Ft. Belvoir, VA 22060.Google Scholar
  13. 13.
    K. H. S. Bagdosarov, The Synthesis of Large Monocrystals of Corundum, in “Ruby and Sapphire”, L. M. Belyayev, ed. Moscow Nauka 1974. English translation by US Army Foreign Science and Technology Center, Charlottesville, VA, 22091, (1975) p. 28.Google Scholar
  14. 14.
    F. Schmid and D. Viechnicki, Growth of Sapphire Disks from the Melt by a Gradient Furnace Technique, J. American Ceramic Society, 53:528.Google Scholar
  15. 15.
    D. Viechnicki and F. Schmid, Crystal Growth Using the Heat Exchanger Method (HEM), J. Crystal Growth, 26: 162. (1974)CrossRefGoogle Scholar
  16. 16.
    J. L. Caslavsky and D. Viechnicki, Melt Growth of Nd: Y3 AI5 O12 (Nd:YAG) Using the Heat Exchanger Method (HEM), J. Crystal Growth, 46: 601. (1979)CrossRefGoogle Scholar
  17. 17.
    J. L. Caslavsky and D. J. Viechnicki, Resolution of Factors Responsible for Difficulty in Growing Single Crystals of YAG, AMMRC TR 82-34, US Army Materials and Mechanics Research Center, Watertown, MA 02172, June 1982.Google Scholar
  18. 18.
    V. I. Aleksandrov, V. V. Osiko, A. M. Prokhorov, and V. M. Tatarintsev, Production of Refractory Single Crystals and Molten Ceramics by a New Method, Vestrik Akad. Nauk. USSR. 12: 29. (1973)Google Scholar
  19. 19.
    K. Nassau, Cubic Zirconia: an update, Lapidary J. 35: 1194, (1981)Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Dennis J. Viechnicki
    • 1
  1. 1.Army Materials and Mechanics Research CenterWatertownUSA

Personalised recommendations