Skip to main content

Plasticity of Conduction Processes in Demyelinated Nerve Fibers: Implications for Therapy in Multiple Sclerosis

  • Chapter
Multiple Sclerosis

Part of the book series: Ettore Majorana International Science Series ((PHYSC,volume 16))

Abstract

Until fairly recently it had always been assumed that the complete loss of myelin over one or more internodes must necessarily produce an irreversible block of impulse conduction in myelinated nerve fibers. This view is a consequence of experimental observations showing that the essential ingredients for generation of nervous activity — voltage dependent channels selective for Na ions — are normally only present at the nodes of Ranvier in mammalian and non-mammalian myelinated nerve fibers. Thus, the exposure of the internodal axon membrane which follows demyelination reveals a structure incapable of producing action potentials. A second obstacle to conduction following demyelination arises from the fact that, even if the internode were in principle excitable, the physiological function of the myelin sheath is to reduce the capacitance, and thus the amount of current necessary to charge the internodal membrane. Removal of this material, in the absence of any other changes, simply represents too great an electrical “load” on the excitation process to allow the continuation of conduction from the last normal node to the distal demyelinated segment(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bostock, H., and Sears, T. A., 1978, The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination, J.Physiol.(London) 280: 273–301.

    Google Scholar 

  • Bostock, H., Sherratt, R. M., and Sears, T. A., 1978, Overcoming conduction failure in demyelinated nerve by prolonging action potentials, Nature 274: 385–387.

    Article  ADS  Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1980, Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibers, Nature (London), 284: 170–171.

    Article  ADS  Google Scholar 

  • Davis, F. A., Schauf, C. L., Reed, B. J., and Kesler, R. L., 1976, Experimental studies of the dependence of conduction in normal and demyelinated nerve on extrinsic factors, I. Temperature. J.Neurol.Neurosurg.Psychiatry, 39: 441.

    Article  Google Scholar 

  • Davis, F. A., Becker, F. O., Michael, J. A., and Sorensen, E., 1970, Effect of intravenous sodium bicarbonate, disodium edetate (Na2EDTA), and hyperventilation on visual and oculomotor signs in multiple sclerosis, J.Neurol.Neurosurg.and Psychiatry, 33: 723–732.

    Article  Google Scholar 

  • Davis, F., Bergen, D., Schauf, C. L., McDonald, I., and Deutsch, W., 1976, Visual phosphenes in multiple sclerosis, Neurology, 26: 1100–1102.

    Article  Google Scholar 

  • Halliday, A. M., McDonald, W. I., and Mushin, J., 1977, Visual evoked potentials in patients with demyelinating disease, in: “Visual Evoked Potentials in Man,” J. E. Desmedt, ed., Claredon Press, Oxford.

    Google Scholar 

  • Howe, J. F ., Loeser, J. D., Calvin, W. H., 1977, Mechnosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression, Pain 3.

    Google Scholar 

  • Huxley, A. F., and Stampfli, R., 1949, Evidence for salutatory conduction in peripheral myelinated nerve fibers, J.Physiol (London), 108: 315–339.

    Google Scholar 

  • Landon, D. N., 1982, The structure of the nerve fiber, in: “Abnormal Nerves and Muscles as Impulse Generators,” W. Culp and J. Ochoa, eds, Oxford University Press, pp. 27–53.

    Google Scholar 

  • Lhermitte, J., Bollack, J., Nicholas, M., 1924, Les douleurs a type de decharge electrique a la flexion cephalique dans le sclerose en plaque, Rev.Neurol., 2: 56–62.

    Google Scholar 

  • McDonald, W. I., 1976, Pathophysiology of conduction in central nerve fibers, in: “New Developments in Visual Evoked Potentials in the Human Brain,” J. E. Desmedt, eds., Oxford University Press.

    Google Scholar 

  • Namerow, N. S., 1968, Circadian temperature rhythm and vision in multiple sclerosis, Neurology (Minneap) 18: 417–422.

    Article  Google Scholar 

  • Nelson, D. A., and McDowell, F., 1959, The effects of induced hyperthermia on patients with multiple sclerosis, J.Neurol.- Neurosurg. and Psychiatry, 22: 113–116.

    Article  Google Scholar 

  • Pencek, T. L., Schauf, C. L., Low, P. A., et al., 1980, Disruption of the perineurium in amphibian peripheral nerve: Morphology and physiology, Neurology, 30: 593–599.

    Article  Google Scholar 

  • Persson, H. E., and Sachs, C., 1978, Provoked visual impairment in multiple sclerosis studied by visual evoked responses, Electroencephalographic J., 44: 664.

    Article  Google Scholar 

  • Prineas, J. S., and Connell, F., 1978, The fine structure of chronically active multiple sclerosis plaques, Neurology, 28: 68.

    Article  Google Scholar 

  • Rasminsky, M., 1978, Physiology of conduction in demyelinated axons, in: “Physiology and Pathobiology of Axons,” S. G. Waxman, ed., pp. 361–367, Raven Press, New York.

    Google Scholar 

  • Rasminsky, M., and Sears, T. A., 1972, Internodal conduction in undissected demyelinated nerve fibers, J.Physiol.(London), 227: 323–250.

    Google Scholar 

  • Ritchie, J. M., and Rogart, R. B., 1977, The density of sodium channels in mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath, Proc.Nat.Acad.Sci., ( USA ), 74: 211–215.

    Article  ADS  Google Scholar 

  • Sclabassi, R. J., Namerow, N. S., and Enns, N. F., 1974, Somatosensory response to stimulus trains in patients with multiple sclerosis, Electroencephalography and Clinical Neuro physiology, 37: 23.

    Article  Google Scholar 

  • Schauf, C. L., and Davis, F. A., 1974, Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents, J. Neurol.Neurosurg.Pyshciatry, 37: 152–161.

    Article  Google Scholar 

  • Schauf, C. L ., and Davis, F. A., 1981, Neuroelectric blocking factors in multiple sclerosis: a perspective, in: “Demyelinating disease: Basic and Clinical Electrophysiology,” S. G. Waxman and J. M. Ritchie, eds., Raven Press, New York, p.267.

    Google Scholar 

  • Schauf, C. L., Pencek, T. L., Davis, F. A., and Rooney, M. W., 1981, Physiological basis for neurelectric blocking activity in multiple sclerosis, Neurology, 31: 1337.

    Article  Google Scholar 

  • Sherratt, R. M., Bostock, H., and Sears, T. A., 1980, Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibers, Nature (London), 283: 570–572.

    Article  ADS  Google Scholar 

  • Smith, K. J., and Hall, S. M., 1980, Nerve conduction during peripheral demyelination and remyelination, J.Neurol.Sci., 48: 201–219.

    Article  Google Scholar 

  • Smith, K. J., and Schauf, C. L., 1981a, Effects of gallamine triethiodide on membrane currents in amphibian and mammalian peripheral nerve, J.Pharmacol.Exp.Ther., 217: 719–726.

    Google Scholar 

  • Smith, K. J., and Schauf, C. L., 1981b, Size-dependent variation of nodal properties in myelinated nerve fibers, Nature, 293: 297.

    Article  ADS  Google Scholar 

  • Smith, K. J., Blakemore, W. F., and McDonald, W. I., 1980, Central remyelination restores secure conduction, Nature (London), 280: 395–396.

    Article  ADS  Google Scholar 

  • Smith, K. J., Bostock, H., and Hall, S. M., 1982, Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline, J.Neurol.Sci., 54: 13–31.

    Article  Google Scholar 

  • Stuhmer, W., and Aimers, W., 1982, Photobleaching through glass micropipettes: sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle, Proc.Nat.Acad.Sci., 79: 946–950.

    Article  ADS  Google Scholar 

  • Watson, C. W., 1959, Effect of lowering of body temperature on the symptoms and signs of multiple sclerosis, New England J.Med., 261: 1253–1259.

    Article  Google Scholar 

  • Waxman, S. G., 1978, Prerequisites for conduction in demyelinated fibers, Neurology, 28: 27–33.

    Article  Google Scholar 

  • Waxman, S. G., and Brill, M. H., 1978, Conduction through demyelinated plaques in multiple sclerosis, Computer simulations of facilitation by short internodes, J.Neurol Neurosurg. Psychiatry, 41: 408–416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Schauf, C.L. (1984). Plasticity of Conduction Processes in Demyelinated Nerve Fibers: Implications for Therapy in Multiple Sclerosis. In: Scarlato, G., Matthews, W.B. (eds) Multiple Sclerosis. Ettore Majorana International Science Series, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2403-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2403-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9465-8

  • Online ISBN: 978-1-4613-2403-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics