Relationship between Mutagenesis and Carcinogenesis

  • Claes Ramel
Part of the Environmental Science Research book series (ESRH, volume 31)


The sequence of events in cancer induction is usually thought to include at least three steps — initiation, promotion and progression. Several lines of evidence speak in favor of a mutational origin of cancer, particularly at the initiation level. This evidence is mostly indirect, but recent analyses of oncogenes have given the theory more direct support. These investigations have indicated that base substitutions as well as chromosomal rearrangements are involved. Other genetic mechanisms of cancer initiation have also been suggested, such as hypomethylation of DNA bases and transposition of DNA segments. However the lack of response both of prokaryotic and eukaryotic transposable elements to carcinogenic agents makes it doubtful whether transpositions are involved in chemically induced cancer. Although experimental data clearly indicate that alterations of DNA are involved in cancer induction, there are also experimental observations on nuclear transplantations, on transmission of induced cancer properties to the offspring, and on the frequency of neoplastic transformations, which are not readily explained by a mutational origin of cancer. Although this circumstance calls for some cautiousness in excluding a nongenetic origin of cancer in some cases, there are nevertheless strong reasons to believe that some kind of somatic mutation events constitute the predominant mechanism for cancer initiation. At the practical screening level the empirical correlation between results from animal cancer tests and short term mutagenicity assays has given a firm foundation for the use of mutagenicity screening for prediction of carcinogenicity.


Phorbol Ester Nuclear Transplantation Cancer Initiation Cancer Induction Cellular Oncogene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avery, O. T. , C. M. MacLeod, and M. McCarty (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction from pneumococcus type III.J.Exp.Med. 79: 137 – 158.CrossRefGoogle Scholar
  2. 2.
    Berenblum, I. (1975) Sequential aspects of chemical carcinogenesis: Skin. InCancer:A Comprehensive Treatise, F. F. Becker, Ed. , Plenum Press, Vol. 1, pp. 323 – 344.Google Scholar
  3. 3.
    Birnboim, H. C. (1981) DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate.Science215: 1247 – 1249.Google Scholar
  4. 4.
    Cairns, J. (1981) The origin of human cancer.Nature289: 359 – 357.Google Scholar
  5. 5.
    Cerutti, P. (1978) Repairable damage in DNA. InDNA RepairMechanisms, P. H. Hanawalt, E. Friedberg and C. F. Fox, Eds. , Academic Press, pp 1 – 14.Google Scholar
  6. 6.
    Cleaver, J. E. and D. Bootsma (1975) Xeroderma pigmentosu - Biochemical and genetic characteristics.Ann.Rev.Genet. 9: 19 – 38.Google Scholar
  7. 7.
    Cooper, G. M. (1982) Cellular transforming genes.Science218: 801 – 806.Google Scholar
  8. 8.
    Feinberg, A. P. and B. Vogelstein (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature301: 89 – 92.Google Scholar
  9. 9.
    DeFeo, D. , M. A. Gonda, H. A. Young, E. H. Chang, D. R. Lowy, E. M. Scolnick and R. W. Ellis (1981) Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus.Proc.Natl.Acad.Sci.USA78: 3328 – 3332.Google Scholar
  10. 10.
    Gurdon, J. B. (1974)The Control of GeneExpressionin Animal Development. Harvard Univ. Press.Google Scholar
  11. 11.
    Hanafusa, H. (1977) Cell transformation by RNA viruses. InComprehensive Virology, Vol. 10, H. Fraenkel-Conrat and R. R. Wagner, Eds. , Plenum Press, pp. 401 – 483.Google Scholar
  12. 12.
    Hayward, W. S. , B. G. Neel and S. M. Astrin (1981) Activation of a cellularonegene by promoter insertion in ALV-induced lymphoid leukosis.Nature290: 475 – 480.Google Scholar
  13. 13.
    Hennings, H. , R. Shores, M. L. Wenk, E. F. Spangler, R. Tarone and S. H. Yuspa (1983) Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters.Nature304: 67 – 69.Google Scholar
  14. 14.
    Holliday, R. (1979) A new theory of carcinogenesis.Brit.J.Cancer40: 513 – 522.Google Scholar
  15. 15.
    Holliday, R. and J. E. Pugh (1975) DNA modification mechanisms and gene activity during development.Science187: 226 – 232.Google Scholar
  16. 16.
    Ising, G. and C. Ramel (1976) Transposition of an X-chromosome segment in Drosophila. InThe Genetics and Biology of Drosophila, M. Ashburner and E. Novitski, Eds. , Academic Press, Vol. lb, pp. 947 – 954.Google Scholar
  17. 17.
    Jones, C. A. , P. J. Marlino, W. Lijinsky and E. Huberman (1981) The relationship between carcinogenicity and mutagenicity of nitrosamines in a hepatocyte mediated mutagenicity assay.Carcinogenesis2: 1075 – 1077.Google Scholar
  18. 18.
    Kinsella, A. R. and M. Radman (1978) Tumor promoter induces sister chromatid exchanges: relevance to mechanism of carcinogenesis.Proc.Natl.Acad.Sci.USA75: 6149 – 6153.ADSGoogle Scholar
  19. 19.
    Klein, G. (1981) The role of gene dosage and genetic transposition in carcinogenesis.Nature294: 313.Google Scholar
  20. 20.
    Land, H. , L. F. Parada and R. A. Weinberg (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes.Nature304: 648 – 651.Google Scholar
  21. 21.
    Levin, D. E. , M. Hollstein, M. F. Christman, E. A. Schwiers, and B. A. Ames (1982) A newSalmonellatester strain (TA102) with A-T base pairs at the site of mutation detects oxidative mutagens.Proc.Natl.Acad.Sci.USA79: 7445 – 7449.Google Scholar
  22. 22.
    Marx, J. L. (1982) The case of the misplaced gene.Science218: 983 – 985.Google Scholar
  23. 23.
    Meselson, M. and K. Russel (1977) Comparisons of carcinogenic and mutagenic potency. InOrigins and Human Cancer, H. H. Hiatt, J. D. Watson and J. A. Weinstein, Eds. , Cold Spring Harbor, Vol. 4, pp. 1473 – 1481.Google Scholar
  24. 24.
    Miller, E. C. and C. M. Miller (1971) The mutagenicity of chemical carcinogens: correlations, problems and interpretations. InChemical Mutagens: Principlesand Methods for Their Detection, Vol. 1, A. Hollaender, Ed. , Plenum Press, pp. 83 – 119.Google Scholar
  25. 25.
    Moller, G. and E. Möller (1975) Consideration of some current concepts in cancer research.J.Natl.Cancer Inst. 55: 755 – 759.Google Scholar
  26. 26.
    Newbold, R. F. and R. W. Overell (1983) Fibroblast immortality is a prerequisite for transformation by EJc-Ha-rasoncogene. Nature 304: 648 – 651.ADSCrossRefGoogle Scholar
  27. 27.
    Newmark, P. (1983) What has moved into c-mos?Nature301: 196.Google Scholar
  28. 28.
    Nomura, T. (1982) Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice.Nature296: 575 – 577.Google Scholar
  29. 29.
    Parry, J. M. , E. M. Parry and J. C. Barrett (1981) Tumour promoters induce mitotic aneuploidy in yeast.Nature294: 363 – 365.Google Scholar
  30. 30.
    Pierce, G. B. (1970) Differentiation of normal and malignant cells.Fed.Proc. 29: 1248 – 1254.Google Scholar
  31. 31.
    Ramel, C. (1982) Polygenic effects and genetic changes affecting quantitative traits.Mutation Res. 114: 107 – 116.Google Scholar
  32. 32.
    Rannug, W. , A. Sundvall and C. Ramel (1978) The mutagenic effect of 1, 2-dichloroethane onSalmonella typhimurium. I. Activation through conjugation with glutathione in vitro.Chem. -Biol.Interactions20: 1 – 16.Google Scholar
  33. 33.
    Rechari, G. , D. Givol and E. Canaani (1982) Activation of cellular oncogene by DNA rearrangement: possible involvement of an IS-like element.Nature300: 607 – 611.Google Scholar
  34. 34.
    Reddy, E. P. , R. K. Reynolds, E. Santos and M. Barbacid (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene.Nature300: 149 – 152.Google Scholar
  35. 35.
    Rowley, J. D. (1983) Human oncogene locations and chromosome aberrations.Nature301: 290 – 291.Google Scholar
  36. 36.
    Ruley, H. E. (1983) Adenovirus early region 1A enables viral and cellular transformation genes to transform primary cells in culture.Nature304: 648 – 651.Google Scholar
  37. 37.
    Setlow, R. B. and R. W. Hart (1975) Direct evidence that changed DNA results in neoplastic transformation A fish story. InProc.Fifth Int.Congr.Radiation Res. , O. F. Nygaard, H. I. Adler: and W. K. Sinclair, Eds. , Academic Press, pp 879 – 884.Google Scholar
  38. 38.
    Shen-Ong, G. L. C. , E. J. Keath, S. P. Piccoli and M. D. Cole (1982) Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas.Cell31: 443 – 452.Google Scholar
  39. 39.
    Shih, C. , B. Z. Shilo, M. P. Goldfarb, A. Dannenberg and R. A. Weinberg (1979) Passage of phenotypes of chemically transformed cells via transfection of DNA chromatin.Proc.Natl.Acad.Sci.USA76: 5714 – 5718.Google Scholar
  40. 40.
    Slaga, T. J. , A. J. P. Klein-Szanto, L. L. Triplett, L. P. Yotti and J. E. Trosko (1981) Skin tumor promoting activity of benzoyl peroxide, a widely used free radical-generating compound.Science213: 1023 – 1025.Google Scholar
  41. 41.
    Tabin, C. J. , S. M. Bradley, C. I. Bargmann, R. A. Weinberg, A. G. Papageorge, E. M. Scolnick, R. Dahr, D. R. Lowy and E. H. Chang (1982) Mechanism of activation of a human oncogene. Nature 300: 143 – 149.ADSCrossRefGoogle Scholar
  42. 42.
    Taparowsky, E. , Y. Suard, 0. Fasano, K. Schimiza, M. Goldfarb and M. Wigler (1982) Mechanism of activation of a human oncogene.Nature300: 762 – 765.Google Scholar
  43. 43.
    Tsuchidaf N. f T. Ryder and E. Ohtsubo (1982) Activation of the T24 bladder carcinoma transforming gene is limited to a single amino acid change.Science217: 937 – 939.Google Scholar
  44. 44.
    Yuspa, S. H. , U. Lichti, T. Ben, E. Patterson, H. Hennings, T. J. Slaga, N. Colburn and W. Kelsey (1976) Phorbol esters stimulate DNA synthesis and ornithine decarboxylase activity in mouse epidermal cell cultures.Nature262: 402 – 404.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Claes Ramel
    • 1
  1. 1.Wallenberg LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations